8、若把函數(shù)y=f(x)的圖象作平移,可以使圖象上的點(diǎn)P(1,0)變換成點(diǎn)Q(2,2),則函數(shù)y=f(x)的圖象經(jīng)此變換后所得圖象對應(yīng)的函數(shù)為
y=f(x-1)+2
分析:先根據(jù)點(diǎn)P到點(diǎn)Q的變化,判斷出圖象和移動(dòng)方向和移動(dòng)距離,然后再進(jìn)行求解.
解答:解:∵將點(diǎn)P(1,0)變成點(diǎn)Q(2,2),即將圖象向右平移一個(gè)單位,向上平移2個(gè)單位,∴用x-1代x,y-2代y得
y=f(x-1)+2.
故答案為:y=f(x-1)+2
點(diǎn)評:沿x軸左右平移時(shí),左+右-,沿y軸上下平移時(shí),上-下+.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若把函數(shù)y=f(x)的圖象沿x軸向左平移
π
4
個(gè)單位,沿y軸向下平移1個(gè)單位,然后再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)保持不變),得到函數(shù)y=sinx的圖象,則y=f(x)的解析式為(  )
A、y=sin(2x-
π
4
)+1
B、y=sin(2x-
π
2
)+1
C、y=sin(
1
2
x+
π
4
)-1
D、y=sin(
1
2
x+
π
2
)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濰坊二模)已知函數(shù)f(x)=-2sinx•cosx+2cos2x+1.
(1)設(shè)方程f(x)-1=0在(0,π)內(nèi)有兩個(gè)零點(diǎn)x1,x2,求x1+x2的值;
(2)若把函數(shù)y=f(x)的圖象向左平移m(m>0)個(gè)單位使所得函數(shù)的圖象關(guān)于點(diǎn)(0,2)對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧二模)已知函數(shù)f(x)=-2sinxcosx+2cos2x+1
(1)設(shè)方程f(x)-1=0在(0,π)內(nèi)有兩個(gè)零點(diǎn)x1,x2,求x1+x2的值;
(2)若把函數(shù)y=f(x)的圖象向左移動(dòng)m(m>0)個(gè)單位,再向下平移2個(gè)單位,使所得函數(shù)的圖象關(guān)于y軸對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把函數(shù)y=f(x)的圖象沿x軸向左平移
π
4
個(gè)單位,然后再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)保持不變),得到函數(shù)y=sinx的圖象,則y=f(x)的解析式為(  )
A、y=sin(2x-
π
4
)
B、y=sin(2x-
π
2
)
C、y=sin(
1
2
x+
π
4
)
D、y=sin(
1
2
x+
π
2
)

查看答案和解析>>

同步練習(xí)冊答案