如圖,四棱錐中,底面為矩形,底面,點(diǎn)M在側(cè)棱上,=60°

(I)證明:M在側(cè)棱的中點(diǎn)

(II)求二面角的大小。

(I)解法一:作于N,作于E,

連ME、NB,則,,

設(shè),則,

中,。

中由

解得,從而 M為側(cè)棱的中點(diǎn)M.

解法二:過的平行線.

解法三:利用向量處理. 詳細(xì)可見09年高考參考答案.

(II)分析一:利用三垂線定理求解。在新教材中弱化了三垂線定理。這兩年高考中求二面角也基本上不用三垂線定理的方法求作二面角。

,作,作,則,,面,即為所求二面角的補(bǔ)角.

分析二:利用二面角的定義。在等邊三角形中過點(diǎn)于點(diǎn),則點(diǎn)為AM的中點(diǎn),取SA的中點(diǎn)G,連GF,易證,則即為所求二面角.

分析三:利用空間向量求。在兩個半平面內(nèi)分別與交線AM垂直的兩個向量的夾角即可。

另外:利用射影面積或利用等體積法求點(diǎn)到面的距離等等,這些方法也能奏效。

總之在目前,立體幾何中的兩種主要的處理方法:傳統(tǒng)方法與向量的方法仍處于各自半壁江山的狀況。命題人在這里一定會照顧雙方的利益。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐中,底面ABCD是菱形,SA=SD=
39
,AD=2
3
,且S-AD-B大小為120°,∠DAB=60°.
(1)求異面直線SA與BD所成角的正切值;
(2)求證:二面角A-SD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省高三第一次月考摸底理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,⊥底面.①證明:平面平面; ②若二面角,求與平面所成角的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省五校聯(lián)盟模擬考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,⊥底面.

(1)證明:平面平面

(2)若二面角,求與平面所成角的正弦值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(本小題滿分12分)如圖,四棱錐中,底面為平行四邊形,,底面.

(1)證明:;

(2)若求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省濟(jì)寧市高二3月月考理科數(shù)學(xué)試卷 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,⊥底面.

(1)證明:平面平面

(2)若二面角,求與平面所成角的正弦值。

 

查看答案和解析>>

同步練習(xí)冊答案