在平面直角坐標(biāo)系xOy中,如圖,已知橢圓E:的左、右頂點(diǎn)分別為A1、A2,上、下頂點(diǎn)分別為B1、B2.設(shè)直線A1B1的傾斜角的正弦值為,圓C與以線段OA2為直徑的圓關(guān)于直線A1B1對稱.

(1)求橢圓E的離心率;
(2)判斷直線A1B1與圓C的位置關(guān)系,并說明理由;
(3)若圓C的面積為π,求圓C的方程.
【答案】分析:(1)設(shè)橢圓E的焦距為2c(c>0),因?yàn)橹本A1B1的傾斜角的正弦值為,所以,由此能求出橢圓E的離心率.
(2)由,設(shè)a=4k(k>0),,則,于是A1B1的方程為:,故OA2的中點(diǎn)(2k,0)到A1B1的距離d=,由此能夠證明直線A1B1與圓C相切.
(3)由圓C的面積為π知圓半徑為1,從而,設(shè)OA2的中點(diǎn)(1,0)關(guān)于直線A1B1的對稱點(diǎn)為(m,n),則,由此能求出圓C的方程.
解答:解:(1)設(shè)橢圓E的焦距為2c(c>0),
因?yàn)橹本A1B1的傾斜角的正弦值為,所以,
于是a2=8b2,即a2=8(a2-c2),所以橢圓E的離心率.(4分)
(2)由可設(shè)a=4k(k>0),,則,
于是A1B1的方程為:
故OA2的中點(diǎn)(2k,0)到A1B1的距離d=,(6分)
又以O(shè)A2為直徑的圓的半徑r=2k,即有d=r,
所以直線A1B1與圓C相切.(8分)
(3)由圓C的面積為π知圓半徑為1,從而,(10分)
設(shè)OA2的中點(diǎn)(1,0)關(guān)于直線A1B1的對稱點(diǎn)為(m,n),
(12分)
解得.所以,圓C的方程為(14分)
點(diǎn)評:本題考查圓錐曲線和直線的位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案