設x∈R,函數(shù)f(x)=cos(ωx+φ),(ω>0,-<φ<0)的最小正周期為,且f()=
(1)求ω和φ的值;
(2)在給定坐標系中作出函數(shù)f(x)在上的圖象;
(3)若f(x)>的取值范圍,求x的取值范圍。
解:(1)周期T=,∴,
,∵。
(2)f(x)=cos(2x-),了表如下:

圖像如圖:

(3)∵cos(2x-)>,∴,
,,k∈Z
x的范圍是{x|,k∈Z}
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a∈R,函數(shù)f(x)=ax3-3x2
(Ⅰ)若x=2是函數(shù)y=f(x)的極值點,求a的值;
(Ⅱ)若函數(shù)g(x)=f(x)+f′(x),x∈[0,2],在x=0處取得最大值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設x∈R,函數(shù)f(x)=cos(ωx+?)(ω>0,-
π
2
<?<0
)的最小正周期為π,且f(
π
4
)=
3
2

(Ⅰ)求ω和?的值;
(Ⅱ)在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象;
(Ⅲ)若f(x)>
2
2
,求x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設k∈R,函數(shù)f(x)=ex-(1+x+kx2)(x>0).
(Ⅰ)若k=1,試求函數(shù)f(x)的導函數(shù)f'(x)的極小值;
(Ⅱ)若對任意的t>0,存在s>0,使得當x∈(0,s)時,都有f(x)<tx2,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x∈R,函數(shù)f(x)=cosx+sinx,g(x)=cosx-sinx.
(1)求函數(shù)F(x)=f(x)•g(x)+f2(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若f(x)=2g(x),求
1+sin2xcos2x-sinxcosx
的值.

查看答案和解析>>

同步練習冊答案