. (滿分12分) 某班同學利用國慶節(jié)進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) |
分組 |
低碳族的人數(shù)[來源:Zxxk.Com] |
占本組的頻率 |
第一組 |
[25,30) |
120 |
0.6 |
第二組 |
[30,35) |
195 |
p |
第三組 |
[35,40) |
100 |
0.5 |
第四組 |
[40,45) |
0.4 |
|
第五組 |
[45,50) |
30[來源:ZXXK] |
0.3 |
第六組 |
[50,55) |
15 |
0.3 |
(Ⅰ)補全頻率分布直方圖,并求、、的值;
(Ⅱ)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中恰有1人年齡在[40,45)歲的概率.
解:(Ⅰ)∵第二組的頻率為1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,
∴高為 0.35=0.06.頻率直方圖如下:
第一組的人數(shù)為 1200.6=200,頻率為0.04×5=0.2,
∴ n=2000.2=1000.
由題可知,第二組的頻率為0.3,
∴第二組的人數(shù)為1000×0.3=300,
∴ p=195300=0.65.
第四組的頻率為0.03×5=0.15,
∴第四組的人數(shù)為1000×0.15=150,
∴a=150×0.4=60.
(Ⅱ)∵[40,45)歲年齡段的“低碳族”與[45,50)歲年齡段的“低碳族”的比值為60:30=2:1,所以采用分層抽樣法抽取6人,[40,45)歲中有4人,[45,50)歲中有2人.
設[40,45)歲中的4人為a、b、c、d,[45,50)歲中的2人為m、n,則選取2人作為領隊的有(a,b)、(a,c)、(a,d)、(a,m)、(a,n)、(b,c)、(b,d)、(b,m)、
(b,n)、(c,d)、(c,m)、(c,n)、(d,m)、(d,n)、(m,n),共15種;
其中恰有1人年齡在[40,45)歲的有(a,m)、(a,n)、(b,m)、(b,n)、
(c,m)、(c,n)、(d,m)、(d,n),共8種.
∴選取的2名領隊中恰有1人年齡在[40,45)歲的概率為.
【解析】略
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)已知函數(shù),其中為常數(shù).
(1)當時,恒成立,求的取值范圍;(2)求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
在一次籃球練習課中,規(guī)定每人最多投籃5次,若投中2次就稱為“通過”,若投中3次就稱為“優(yōu)秀”并停止投籃.已知甲每次投籃投中的概率是.
(I)求甲恰好投籃3次就通過的概率;
(II)設甲投籃投中的次數(shù)為,求隨機變量的分布列及數(shù)學期望E.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com