(本小題滿分14分)
已知橢圓C:=1的左.右焦點(diǎn)為,離心率為,直線與x軸、y軸分別交于點(diǎn)是直線與橢圓C的一個公共點(diǎn),是點(diǎn)關(guān)于直線的對稱點(diǎn),設(shè)
(Ⅰ)證明:; (Ⅱ)確定的值,使得是等腰三角形.

解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204825723423.png" style="vertical-align:middle;" />分別是直線與x軸、y軸的交點(diǎn),所以的坐標(biāo)分別是.
所以點(diǎn)的坐標(biāo)是().   由
,得
(Ⅱ)由,得為鈍角,要使為等腰三角形,必有,即
設(shè)點(diǎn)的距離為,由
 所以,于是
即當(dāng)時,為等腰三角形
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:方程表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線的離心率,若p、q有且只有一個為真,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點(diǎn)在軸上,則它的離心率的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的離心率,長軸的左右兩個端點(diǎn)分別為;
(1)求橢圓C的方程;
(2)點(diǎn)在該橢圓上,且,求點(diǎn)軸的距離;
(3)過點(diǎn)(1,0)且斜率為1的直線與橢圓交于P,Q兩點(diǎn),求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓兩焦點(diǎn)為 , ,P在橢圓上,若 △的面積的最大值為12,則橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分13分)
P為橢圓上任意一點(diǎn),為左、右焦點(diǎn),如圖所示.
(1)若的中點(diǎn)為,求證:
(2)若∠,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點(diǎn)P,使·=0,若存在,求出P點(diǎn)的坐標(biāo),若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(理)已知有相同兩焦點(diǎn)F1、F2的橢圓 + y2=1(m>1)和雙曲線 - y2=1(n>0),P是它們的一個交點(diǎn),則ΔF1PF2的形狀是(   )
A.銳角三角形B.直角三角形C.鈍有三角形D.隨m、n變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知焦距為4的橢圓的左、右頂點(diǎn)分別為,橢圓的右焦點(diǎn)為,過作一條垂直于軸的直線與橢圓相交于,若線段的長為。
(1)求橢圓的方程;
(2)設(shè)是直線上的點(diǎn),直線與橢圓分別交于點(diǎn),求證:直線必過軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓()的左焦點(diǎn)軸的垂線交橢圓于點(diǎn)為右焦點(diǎn),若,則橢圓的離心率為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案