(2012•貴陽模擬)如果一個正四位數(shù)的千位數(shù)a、百位數(shù)b、十位數(shù)c和個位數(shù)d滿足關系(a-b)(c-d)<0,則稱其為“彩虹四位數(shù)”,例如2012就是一個“彩虹四位數(shù)”.那么,正四位數(shù)中“彩虹四位數(shù)”的個數(shù)為
3645
3645
.(直接用數(shù)字作答)
分析:當b>a時,c>d,a和b有36種組合,c和d有45種組合,共有36×45=1620個.當b<a時,d<c,a和b,c和d,都有45種組合,共有45×45=2025個,相加即得所求.
解答:解:當b>a時,c>d.
a不能為零,所以a和b有36種組合,c和d有45種組合,共有36×45=1620個.
當b<a時,d>c.
a和b,c和d,都有45種組合,共有45×45=2025個.
總共1620+2025=3645個,
故答案為 3645.
點評:本題主要考查排列與組合及兩個基本原理,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•貴陽模擬)若對于任意實數(shù)x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,則a3的值為
-8
-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴陽模擬)直線x-2y+1=0關于直線x=3對稱的直線方程為
x+2y-7=0
x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴陽模擬)如圖所示,在長方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點.
(1)若C1M=
32
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點M使得BM⊥平面A1B1M?若存在,求出C1M的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴陽模擬)若函數(shù)f(x)定義域為R,滿足對任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱f(x)為“V形函數(shù)”;若函數(shù)g(x)定義域為R,g(x)恒大于0,且對任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),則稱g(x)為“對數(shù)V形函數(shù)”.
(1)當f(x)=x2時,判斷f(x)是否為V形函數(shù),并說明理由;
(2)當g(x)=x2+2時,證明:g(x)是對數(shù)V形函數(shù);
(3)若f(x)是V形函數(shù),且滿足對任意x∈R,有f(x)≥2,問f(x)是否為對數(shù)V形函數(shù)?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴陽模擬)若實數(shù)a、b、m滿足2a=5b=m,且
2
a
+
1
b
=2
,則m的值為
2
5
2
5

查看答案和解析>>

同步練習冊答案