設(shè)關(guān)于x的函數(shù)f(x)=-cos2x-2msinx+m2+2m的最小值是m的函數(shù),記為g(m).
(1)求g(m)的解析表達式;
(2)當g(m)=5時,求m的值;
(3)如果方程f(x)=0在x∈(0,π)有兩不相等的解,求實數(shù)m的取值范圍.
【答案】分析:(1)先對f(x)進行變形:f(x)=sin2x-2msinx+m2+2m-1,令t=sinx,則t∈[-1,1],函數(shù)可變?yōu)閔(t)=t2-2mt+m2+2m-1=(t-m)2+2m-1,按對稱軸與區(qū)間[-1,1]的位置分三種情況討論即可求得g(0);
(2)由(1)分三種情況解g(m)=5即可;
(3)方程f(x)=0在x∈(0,π)有兩不相等的解,等價于h(t)=t2-2mt+m2+2m-1=0在t∈(0,1)上有一解,問題轉(zhuǎn)化為函數(shù)h(t)(0,1)上有一個零點,由此即可得到關(guān)于m的限制條件;
解答:解:(1)f(x)=sin2x-2msinx+m2+2m-1,
令t=sinx,則t∈[-1,1],
則函數(shù)可變?yōu)閔(t)=t2-2mt+m2+2m-1=(t-m)2+2m-1,
圖象開口向上,對稱軸為t=m,
①當m<-1時,g(m)=h(-1)=m2+4m;
②當-1≤m≤1時,g(m)=h(m)=2m-1;
③當m>1時,g(m)=h(1)=m2
所以g(m)=
(2)當g(m)=5時,
若m<-1,有m2+4m=5,解得m=-5或m=1(舍);
若-1≤m≤1,有2m-1=5,解得m=3(舍);
若m>1,有m2=5,解得m=或-(舍);
綜上知,m=-5或m=
(3)方程f(x)=0在x∈(0,π)有兩不相等的解,由(1)知:等價于h(t)=t2-2mt+m2+2m-1=0在t∈(0,1)上有一解,
或h(0)•h(1)<0,即m=或(m2+2m-1)m2<0,所以m=或-1-<m<-1+,且m≠0,
所以m的取值范圍為:m=或m∈(-1-,0)∪(0,-1+).
點評:本題考查二次函數(shù)在閉區(qū)間上的最值問題、分段函數(shù)求值及函數(shù)的零點,屬中檔題,本題具有一定綜合性,需要掌握相關(guān)基礎(chǔ)知識.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011-2012學年河北省唐山市高二(下)期中數(shù)學試卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為實數(shù)集R上的常數(shù),函數(shù)f(x)在x=1處取得極值0.
(Ⅰ)已知函數(shù)f(x)的圖象與直線y=k有兩個不同的公共點,求實數(shù)k的取值范圍;
(Ⅱ)設(shè)函數(shù),其中p≤0,若對任意的x∈[1,2],總有2f(x)≥g(x)+4x-2x2成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省年高考數(shù)學壓軸卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為實數(shù)集R上的常數(shù),函數(shù)f(x)在x=1處取得極值0.
(Ⅰ)已知函數(shù)f(x)的圖象與直線y=k有兩個不同的公共點,求實數(shù)k的取值范圍;
(Ⅱ)設(shè)函數(shù),其中p≤0,若對任意的x∈[1,2],總有2f(x)≥g(x)+4x-2x2成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省月考題 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個交點,求實數(shù)k的取值范圍;
(3)設(shè)函數(shù) ,若對任意的x∈[1,2],2f(x)≥g(x)+4x﹣2x2恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省黃岡市浠水二中高三(上)9月數(shù)學滾動試卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個交點,求實數(shù)k的取值范圍;
(3)設(shè)函數(shù),若對任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省荊州中學高三(上)9月質(zhì)量檢查數(shù)學試卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個交點,求實數(shù)k的取值范圍;
(3)設(shè)函數(shù),若對任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案