【題目】如圖,在邊長為2菱形ABCD中,,且對(duì)角線ACBD交點(diǎn)為O沿BD折起,使點(diǎn)A到達(dá)點(diǎn)的位置.

1)若,求證:平面ABCD;

2)若,求三棱錐體積.

【答案】1)見解析(2

【解析】

(1)證明即可.

(2)法一:證明平面,再過點(diǎn)垂足為,證明為三棱錐的高再求解即可.

法二:通過進(jìn)行轉(zhuǎn)化求解即可.

法三:通過進(jìn)行轉(zhuǎn)化求解即可.

證明:(1)∵在菱形ABCD中,,,ACBD交于點(diǎn)O

BD為折痕,將折起,使點(diǎn)A到達(dá)點(diǎn)的位置,∴,

,,

,∴,

,∴平面ABCD

2)(法一):∵,,

的中點(diǎn),則,

因?yàn)?/span>,,

所以平面,

過點(diǎn)垂足為,則平面BCD,

,解得

,

∴三棱錐體積

(法二): 因?yàn)?/span>,,取AC中點(diǎn)E,

,,

,又

(法三)因?yàn)?/span>,,所以平面

,,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙、丙三個(gè)盒子,其中每個(gè)盒子中都裝有標(biāo)號(hào)分別為12、34、5、6的六張卡片,現(xiàn)從甲、乙、丙三個(gè)盒子中依次各取一張卡片使得卡片上的標(biāo)號(hào)恰好成等差數(shù)列的取法數(shù)為(

A.14B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AEBF所成角的余弦值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=4+x,每日的銷售額S(單位:萬元)與日產(chǎn)量x滿足函數(shù)關(guān)系式

S=,已知每日的利潤L=S﹣C,且當(dāng)x=4時(shí),L=7.

(1)求k;

(2)當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤可以達(dá)到最大?并求此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是合情推理的是(  )

①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);

②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是

③由,滿足,推出是奇函數(shù);

④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.

A. ①②④B. ①③④C. ②④D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 。試問:當(dāng)且僅當(dāng)、滿足什么條件時(shí),對(duì)上任意一點(diǎn),均存在以為頂點(diǎn)、與外切、與 內(nèi)接的平行四邊形?并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市在開展創(chuàng)建全國文明城市活動(dòng)中,工作有序扎實(shí),成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評(píng).“創(chuàng)文過程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護(hù)問題情況的問卷調(diào)查,現(xiàn)從參與問卷調(diào)查的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求出a的值;

2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現(xiàn)要再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求第2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個(gè)偶數(shù)2,4,6;再染6后面最鄰近的5個(gè)連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個(gè)連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個(gè)連續(xù)奇數(shù)29,31,…,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,……,則在這個(gè)紅色子數(shù)列中,由1開始的第2019個(gè)數(shù)是( )

A. 3972 B. 3974 C. 3991 D. 3993

查看答案和解析>>

同步練習(xí)冊(cè)答案