4.若函數(shù)y=f(x)為偶函數(shù),且在(0,+∞)上是減函數(shù),又f(3)=0,則$\frac{f(x)+f(-x)}{2x}<0$的解集為(  )
A.(-3,3)B.(-3,0)∪(3,+∞)C.(-∞,-3)∪(0,3)D.(-∞,-3)∪(3,+∞)

分析 利用函數(shù)的奇偶性將不等式進行化簡,然后利用函數(shù)的單調性確定不等式的解集.

解答 解:因為y=f(x)為偶函數(shù),所以$\frac{f(x)+f(-x)}{2x}=\frac{2f(x)}{2x}=\frac{f(x)}{x}<0$,
所以不等式等價為$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.或\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$.
因為函數(shù)y=f(x)為偶函數(shù),且在(0,+∞)上是減函數(shù),又f(3)=0,
所以解得x>3或-3<x<0,
即不等式的解集為(-3,0)∪(3,+∞).
故選:B.

點評 本題主要考查函數(shù)奇偶性的應用,利用數(shù)形結合的思想是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.在正方體ABCD-A1B1C1D1中,下列幾種說法不正確的是(  )
A.A1C1⊥BDB.D1C1∥AB
C.二面角A1-BC-D的平面角為45°D.AC1與平面ABCD所成的角為45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設命題p:?x∈R,x2-4x+2m≥0(其中m為常數(shù))則“m≥1”是“命題p為真命題”的(  )
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)為奇函數(shù),當x≥0時,f(x)=cosx,則$f(-\frac{π}{6})$=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知圓C:(x-1)2+(y-4)2=r2(r>0)
(Ⅰ)若直線x-y+5=0與圓C相交所得弦長為$2\sqrt{2}$,求半徑r;
(Ⅱ)已知原點O,點A(2,0),若圓C上存在點P,使得$|PO|=\sqrt{2}|PA|$,求半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.A為直線3x+4y=10上的一動點,過A作圓x2+y2=1的兩條切線,切點分別為P,Q,則四邊形OPAQ的面積的最小值是( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知奇函數(shù)f(x)是定義在(-2,2)上的減函數(shù),若f(m-1)+f(1-2m)>0,則實數(shù)m取值范圍為( 。
A.m>0B.0<m<$\frac{3}{2}$C.-1<m<3D.-<m<$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知M、N分別為四面體ABCD的面BCD與面ACD的重心,且G為AM上一點,且GM:GA=1:3,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{AD}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{BG}$,$\overrightarrow{BN}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=1+log2x(1≤x≤4),求函數(shù)g(x)=f2(x)+f(x2)的最大值與最小值.

查看答案和解析>>

同步練習冊答案