3.在平面直角坐標(biāo)系xOy中,已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一條漸近線與直線l:2x-y+1=0垂直,則實(shí)數(shù)a=2.

分析 先求出直線方程的斜率,并表示出雙曲線方程的漸近線,再由雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一條漸近線與直線l:2x-y+1=0垂直可知兩直線的斜率之積等于-1,可求出a的值.

解答 解:直線l:2x-y+1=0的斜率等于2,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的漸近線可以表示為:y=±$\frac{x}{a}$
又因?yàn)殡p曲線C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一條漸近線與直線l:2x-y+1=0垂直,
∴2×(-$\frac{1}{a}$)=-1,∴a=2,
故答案為2

點(diǎn)評(píng) 本題主要考查雙曲線的基本性質(zhì)--漸近線方程的表示,考查兩直線的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)a>b>0,m=$\sqrt{a}$-$\sqrt$,n=$\sqrt{a-b}$,則m,n的大小關(guān)系是m<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.
(1)若E,F(xiàn)分別是PC,AD的中點(diǎn),證明:EF∥平面PAB;
(2)若E是PC的中點(diǎn),F(xiàn)是AD上的動(dòng)點(diǎn),問(wèn)AF為何值時(shí),EF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.一臺(tái)機(jī)器按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,下表為抽樣試驗(yàn)的結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒-11614128
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件)11985
(1)畫出散點(diǎn)圖;
(2)已知y對(duì)x有線性相關(guān)關(guān)系,求回歸方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)生產(chǎn)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
附:線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}-\stackrel{∧}\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|3≤x<10},集合B={x|2x-16≥0}.
(1)求A∪B;
(2)求∁R(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$.A為橢圓上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足$\overrightarrow{OP}$=$2\overrightarrow{AO}$,
(1)若點(diǎn)P的坐標(biāo)為(2,$\sqrt{2}$),求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)P的一條直線交橢圓于B,C兩點(diǎn),且$\overrightarrow{BP}$=m$\overrightarrow{BC}$,直線OA,OB的斜率之積-$\frac{1}{2}$,求實(shí)數(shù)m的值;
(3)在(1)的條件下,是否存在定圓M,使得過(guò)圓M上任意一點(diǎn)T都能作出該橢圓的兩條切線,且這兩條切線互相垂直?若存在,求出定圓M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a•2x-$\frac{4}{3}$a),其中f(x)是偶函數(shù).
(Ⅰ) 求實(shí)數(shù)k的值;
(Ⅱ) 求函數(shù)g(x)的定義域;
(Ⅲ) 若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),直線l與拋物線C相交于A,B兩點(diǎn),且線段AB的中點(diǎn)為M(2,2).
(1)求拋物線的C的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知f(x2+1)=$\frac{x}{{2{x^2}+3}}$(x>0),則f(x)=( 。
A.$\frac{{\sqrt{x-1}}}{2x+1}$B.$-\frac{{\sqrt{x-1}}}{2x+1}$C.$\frac{{\sqrt{x}}}{2x+3}$D.$-\frac{{\sqrt{x}}}{2x+3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案