【題目】數(shù)列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項(xiàng)和為

【答案】1830
【解析】解:∵ ,

令bn+1=a4n+1+a4n+2+a4n+3+a4n+4 , a4n+1+a4n+3=(a4n+3+a4n+2)﹣(a4n+2﹣a4n+1)=2,
a4n+2+a4n+4=(a4n+4﹣a4n+3)+(a4n+3+a4n+2)=16n+8,
則bn+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n3+a4n2+a4n1+a4n+16=bn+16
∴數(shù)列{bn}是以16為公差的等差數(shù)列,{an}的前60項(xiàng)和為即為數(shù)列{bn}的前15項(xiàng)和
∵b1=a1+a2+a3+a4=10
=1830
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|0<x<3},B= ,則集合A∩(RB)為(
A.[0,1)
B.(0,1)
C.[1,3)
D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:

(Ⅱ)若AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 )的焦點(diǎn)為點(diǎn) 在拋物線 ,直線 與拋物線 交于 , 兩點(diǎn), 為坐標(biāo)原點(diǎn).

(1)求拋物線 的方程

(2)求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率直方分布圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中x的值;
(2)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=2x3﹣3(1+a)x2+6ax在D內(nèi)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱f(x)在區(qū)間D上存在次不動(dòng)點(diǎn).若函數(shù)f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

同步練習(xí)冊(cè)答案