【題目】已知橢圓經過點,離心率為, 為坐標原點.

I)求橢圓的方程.

II)若點為橢圓上一動點,點與點的垂直平分線l交軸于點的最小值.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析I)由離心率得到,再由橢圓過點E可求得, ,故可得橢圓的方程;II)設點,結合條件可得AP的垂直平分線的方程為: ,令,得,再由點P在橢圓上可得得,化簡點,求出|OB|后用基本不等式求解即可。

試題解析:(Ⅰ)因為橢圓的離心率為,

所以,故,

所以橢圓的方程為為

又點在橢圓上,

所以,

解得,

所以橢圓的方程為

(Ⅱ)由題意直線的斜率存在,設點,

則線段的中點的坐標為,且直線的斜率,

因為直線,

故直線的斜率為,且過點,

所以直線的方程為:

,得

,

,得,

化簡得

所以

當且僅當,即時等號成立.

所以的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點,且PA=AB=AC=2,BC=2

(1)求證:CD⊥平面PAC;
(2)如果如果N是棱AB上一點,且直線CN與平面MAB所成角的正弦值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對任意x∈(﹣ , )恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結論中一定成立的是(

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】同時滿足兩個條件:(1)定義域內是減函數(shù);(2)定義域內是奇函數(shù)的函數(shù)是(
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P是邊長為2的正三角形ABC邊BC上的動點,則 的值(
A.是定值6
B.最大值為8
C.最小值為2
D.與P點位置有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)的定義域為(﹣a,0)∪(0,a)(0<a<1),其圖象上任意一點P(x,y)滿足x2+y2=1,則給出以下四個命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域為(a2 , 1)其中正確的命題個數(shù)為(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線E上任意一點P到兩個定點 的距離之和為4,
(1)求動點P的方程;
(2)設過(0,﹣2)的直線l與曲線E交于C、D兩點,且 (O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|0≤x≤6},B={y|0≤y≤2},從A到B的對應法則f不是映射的是(
A.f:x
B.f:x
C.f:x
D.f:x

查看答案和解析>>

同步練習冊答案