在等差數(shù)列{an}中,a2+a7=-23,a3+a8=-29.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{an+bn}是首項為1,公比為c的等比數(shù)列,求數(shù)列{bn}的前n項和Sn.
(Ⅰ);(Ⅱ)當c=1時,Sn=+n=;當c≠1時,Sn=+.
解析試題分析:(Ⅰ)根據(jù)等差數(shù)列的通項公式,列出方程組,解得,從而寫出通項公式為;(Ⅱ)根據(jù)題目條件,寫出的通項公式為an+bn=cn-1,代入,得出的通項公式bn=3n-2+cn-1,可知是由等差數(shù)列和等比數(shù)列組成,則根據(jù)分組求和得出,但注意等比數(shù)列的公比,討論當,和當兩種情況.
試題解析:(Ⅰ)設等差數(shù)列{an}的公差為d,則
解得
∴數(shù)列{an}的通項公式為an=-3n+2.
(Ⅱ)∵數(shù)列{an+bn}是首項為1,公比為c的等比數(shù)列,
∴an+bn=cn-1,即-3n+2+bn=cn-1,∴bn=3n-2+cn-1.
∴Sn=[1+4+7+…+(3n-2)]+(1+c+c2+…+cn-1)
=+(1+c+c2+…+cn-1).
當c=1時,Sn=+n=;當c≠1時,Sn=+.
考點:1.數(shù)列的通項公式;2.數(shù)列的求和;3.等差數(shù)列和等比數(shù)列的性質應用.
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,且對一切正整數(shù)n成立
(1)求出數(shù)列{an}的通項公式;
(2)設,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前項和為,且,;數(shù)列中,點在直線上.
(1)求數(shù)列和的通項公式;
(2)設數(shù)列的前和為,求;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,且滿足an=Sn+1(n∈N*);
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若,cn=,且{cn}的前n項和為Tn,求使得 對n∈N*都成立的所有正整數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com