15.已知點P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上一點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,I為△PF1F2的內心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$成立,則雙曲線的離心率為(  )
A.4B.$\frac{5}{2}$C.2D.$\frac{5}{3}$

分析 設圓I與△PF1F2的三邊F1F2、PF1、PF2分別相切于點E、F、G,連接IE、IF、IG,可得△IF1F2,△IPF1,△IPF2可看作三個高相等且均為圓I半徑r的三角形.利用三角形面積公式,代入已知式S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$,化簡可得|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,再結合雙曲線的定義與離心率的公式,可求出此雙曲線的離心率.

解答 解:如圖,設圓I與△PF1F2的三邊F1F2、PF1、PF2分別相切于點E、F、G,連接IE、IF、IG,
則IE⊥F1F2,IF⊥PF1,IG⊥PF2,它們分別是:
△IF1F2,△IPF1,△IPF2的高,
∴S${\;}_{△IP{F}_{1}}$=$\frac{1}{2}$×|PF1|×|IF|=$\frac{r}{2}$|PF1|,
${S}_{△IP{F}_{2}}$=$\frac{1}{2}$×|PF2|×|IG|=$\frac{r}{2}$|PF2|,
S${\;}_{△I{F}_{1}{F}_{2}}$=$\frac{1}{2}$×|F1F2|×|IE|=$\frac{r}{2}$|F1F2|,其中r是△PF1F2的內切圓的半徑.
∵S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$,
∴$\frac{r}{2}$|PF1|=$\frac{r}{2}$|PF2|+$\frac{r}{4}$|F1F2|,
兩邊約去$\frac{r}{2}$得:|PF1|=|PF2|+$\frac{1}{2}$|F1F2|,
∴|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,
根據(jù)雙曲線定義,得|PF1|-|PF2|=2a,|F1F2|=2c,
∴2a=c⇒離心率為e=2,
故選:C.

點評 本題將三角形的內切圓放入到雙曲線當中,用來求雙曲線的離心率,著重考查了雙曲線的基本性質、三角形內切圓的性質和面積計算公式等知識點,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.如果一個三角形最大角是最小角的2倍,且三邊是連續(xù)的自然數(shù),則這個三角形的邊長分別為( 。
A.2,3,4B.3,4,5C.4,5,6D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點與短軸的兩個端點構成一個面積為1的直角三角形.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設過點M(0,t)(t>0)的直線l與橢圓E相交于A、B兩點,點M關于原點的對稱點為N,若點N總在以線段AB為直徑的圓內,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等差數(shù)列{an}的前n項和為Sn,且a10=21,S10=120.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點為B,右焦點為F,∠OFB=30°,P為線段BF的中點,且線段OP長為1.
(Ⅰ)試確定橢圓C的方程;
(Ⅱ)若直線l與圓E:x2+y2=3相切且交橢圓C于M,N兩點,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,已知長方體ABCD-A1B1C1D1中,AB=BC=4,CC1=2,則直線BC1和平面DBB1D1所成角的正弦值等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列事件:①拋一枚硬幣,出現(xiàn)正面朝上;②某人買彩票中獎;③大年初一太原下雪;④標準大氣壓下,水加熱到90°C時會沸騰.其中隨機事件的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是( 。
A.y=x|x|B.y=-x3C.y=$\frac{1}{x}$D.y=sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知a,b∈R,則命題“若a+b=1,則a2+b2≥$\frac{1}{2}$”的逆否命題是( 。
A.若a+b≠1,則a2+b2<$\frac{1}{2}$B.若a+b=1,則a2+b2<$\frac{1}{2}$
C.若a2+b2<$\frac{1}{2}$,則a+b≠1D.若a2+b2≥$\frac{1}{2}$,則a+b=1

查看答案和解析>>

同步練習冊答案