數(shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列且bnan+1an(n∈N*).若b3=-2,b10=12,求a8的值

解析試題分析:先利用等差數(shù)列的通項(xiàng)公式分別表示出b3和b10,聯(lián)立方程求得b1和d的值,進(jìn)而利用疊加法求得b1+b2+…+bn=an+1-a1,最后利用等差數(shù)列的求和公式求得所求先求 再遞推或疊加求
解:依題意可知b1+2d=-2,b1+9d=12,解得b1=-6,d=2,∵bn=an+1-an,∴b1+b2+…+bn=an+1-a1,,∴a8=b1+b2+…+b7+3= 。
考點(diǎn):數(shù)列的遞推式
點(diǎn)評:本題主要考查了數(shù)列的遞推式,以及對數(shù)列基礎(chǔ)知識的熟練掌握,同時考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)等比數(shù)列,若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是一個等差 數(shù)列,且。
(1)求的通項(xiàng); (2)求的前項(xiàng)和的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,為前n項(xiàng)和,且滿足
(1)求及數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前n項(xiàng)和為,且滿足,.
(1)求數(shù)列的通項(xiàng)及前n項(xiàng)和
(2)令(),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式  
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求:的值;
(2)類比等差數(shù)列的前項(xiàng)和公式的推導(dǎo)方法,求:
 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且
(1)求通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案