【題目】某生物探測(cè)器在水中逆流行進(jìn)時(shí),所消耗的能量為EcvnT,其中v為行進(jìn)時(shí)相對(duì)于水的速度,T為行進(jìn)時(shí)的時(shí)間(單位:h),c為常數(shù),n為能量次級(jí)數(shù),如果水的速度為4km/h,該生物探測(cè)器在水中逆流行進(jìn)200km

1)求T關(guān)于v的函數(shù)關(guān)系式;

2)①當(dāng)能量次級(jí)數(shù)為2時(shí),求探測(cè)器消耗的最少能量;

②當(dāng)能量次級(jí)數(shù)為3時(shí),試確定v的大小,使該探測(cè)器消耗的能量最少.

【答案】1T,(v4);(2)①3200c②6

【解析】

1)由題意得,化簡(jiǎn)即可得解;

2)①由題意得,利用基本不等式即可得解;②由題意,求導(dǎo)得,確定單調(diào)性即可得解.

1)由題意得,該探測(cè)器相對(duì)于河岸的速度為,

又該探測(cè)器相對(duì)于河岸的速度比相對(duì)于水的速度小4km/h,即為v4,

v4,即T,(v4);

2)①當(dāng)能量次級(jí)數(shù)為2時(shí),由(1)知,v4,

≥200c[28]3200c,當(dāng)且僅當(dāng)v4,即v8km/h時(shí)取等號(hào),

②當(dāng)能量次級(jí)數(shù)為3時(shí),由(1)知v4,

,由,解得v6

即當(dāng)v6時(shí),,當(dāng)v6時(shí),,

即當(dāng)v6時(shí),函數(shù)E取得最小值為E21600c

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),為常數(shù),且)滿足條件:,且方程有兩相等實(shí)根.

1)求的解析式;

2)設(shè)命題函數(shù)上有零點(diǎn),命題函數(shù)上單調(diào)遞增;若命題為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線Cy22pxp0)的焦點(diǎn)是F,直線y2與拋物線C的交點(diǎn)到F的距離等于2

1)求拋物線C的方程;

2)過(guò)點(diǎn)(2,0)斜率為k的直線l交拋物線CA、B兩點(diǎn),O為坐標(biāo)原點(diǎn),直線AO與直線x=﹣2相交于點(diǎn)P,求證:BPx軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱的所有棱長(zhǎng)均為2, , 分別為的中點(diǎn).

(1)證明: 平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)集A{x,y|x2+y2≤1}B{x,y|x≤4,y≥0,3x4y≥0},則點(diǎn)集Q{x,y|xx1+x2yy1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=(x2+2x3ex

1)求fx)在x0處的切線;

2)求fx)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的直角頂點(diǎn)軸上,點(diǎn)為斜邊的中點(diǎn),且平行于軸.

(Ⅰ)求點(diǎn)的軌跡方程;

(Ⅱ)設(shè)點(diǎn)的軌跡為曲線,直線的另一個(gè)交點(diǎn)為.以為直徑的圓交軸于即此圓的圓心為,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中已知橢圓過(guò)點(diǎn),其左、右焦點(diǎn)分別為,離心率為.

1)求橢圓E的方程;

2)若A,B分別為橢圓E的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足,且MA交橢圓E于點(diǎn)P.

i)求證:為定值;

ii)設(shè)PB與以PM為直徑的圓的另一交點(diǎn)為Q,問(wèn):直線MQ是否過(guò)定點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若恒成立,求實(shí)數(shù)a的取值范圍;

2)若關(guān)于x的方程有兩個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案