科目:高中數(shù)學 來源: 題型:
已知中心在原點、焦點在x軸的橢圓的離心率為,且過點(,).
(Ⅰ)求橢圓E的方程;
(Ⅱ)若A,B是橢圓E的左、右頂點,直線:()與橢圓E交于、兩點,證明直線與直線的交點在垂直于軸的定直線上,并求出該直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山西省高三第一學期8月月考文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關(guān)的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年湖南省株洲市高三第五次月考文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關(guān)的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆黑龍江省高二上學期期末文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點(),
(1)求橢圓的方程;
(2)設直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆陜西省西安市高二上學期期末考試理科數(shù)學卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點,為其右焦點.
(1)求橢圓的方程;
(2)設過點的直線與橢圓相交于、兩點(點在兩點之間),若與的面積相等,試求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com