設f'(x)是f(x)=
1
3
x3+2x
的導函數(shù),則f'(-1)等于( 。
A、3B、2C、-2D、-3
分析:求出函數(shù)的導數(shù),將自變量-1代入求出函數(shù)的值即可選出正確答案.
解答:解:由題意,f′(x)=x2+2
∴f'(-1)=1+2=3
故選A
點評:本題考查函數(shù)的求導運算及求函數(shù)值,求解本題的關鍵是根據(jù)求導公式,正確的求出函數(shù)的導數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)一模)設f(x)是定義在R上的函數(shù).
①若存在x1,x2∈R,x1<x2,使f(x1)<f(x2)成立,則函數(shù)f(x)在R上單調(diào)遞增;
②若存在x1,x2∈R,x1<x2,使f(x1)≤f(x2)成立,則函數(shù)f(x)在R上不可能單調(diào)遞減;
③若存在x2>0,對于任意x1∈R,都有f(x1)<f(x1+x2)成立,則函數(shù)f(x)在R上單調(diào)遞增;
④對任意x1,x2∈R,x1<x2,都有f(x1)≥f(x2)成立,則函數(shù)f(x)在R上單調(diào)遞減.
以上命題正確的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)是定義在集合D上的函數(shù),若對集合D中的任意兩數(shù)x1,x2恒有數(shù)學公式成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設f(x)是定義在集合D上的函數(shù),若對任意實數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對任意滿足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年上海市黃浦區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學 來源:2007年上海市浦東新區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:選擇題

設f(x)是定義在R上的函數(shù).
①若存在x1,x2∈R,x1<x2,使f(x1)<f(x2)成立,則函數(shù)f(x)在R上單調(diào)遞增;
②若存在x1,x2∈R,x1<x2,使f(x1)≤f(x2)成立,則函數(shù)f(x)在R上不可能單調(diào)遞減;
③若存在x2>0,對于任意x1∈R,都有f(x1)<f(x1+x2)成立,則函數(shù)f(x)在R上單調(diào)遞增;
④對任意x1,x2∈R,x1<x2,都有f(x1)≥f(x2)成立,則函數(shù)f(x)在R上單調(diào)遞減.
以上命題正確的序號是( )
A.①③
B.②③
C.②④
D.②

查看答案和解析>>

同步練習冊答案