精英家教網 > 高中數學 > 題目詳情
已知點是橢圓上一點,為橢圓的一個焦點,且軸,焦距,則橢圓的離心率是(     )
A.B.-1C.-1D.
C

試題分析:設焦點,橢圓方程中令整理的
點評:求離心率關鍵是找到關于的齊次方程或不等式
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且.
(1)求點T的橫坐標;
(2)若以F1,F2為焦點的橢圓C過點.
①求橢圓C的標準方程;
②過點F2作直線l與橢圓C交于A,B兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

是橢圓的左焦點,直線方程為,直線軸交于點,分別為橢圓的左右頂點,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為的直線交橢圓于、兩點,求三角形面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經過點;橢圓的一個焦點到長軸兩端點的距離分別為10和4.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓過點,且離心率
(1)求橢圓的標準方程;
(2)是否存在過點的直線交橢圓于不同的兩點MN,且滿足(其中點O為坐標原點),若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(),
(1)求橢圓的方程;
(2)設直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓是其左頂點和左焦點,是圓上的動點,若,則此橢圓的離心率是       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓的左焦點為, 點在橢圓上, 如果線段的中點軸的
正半軸上, 那么點的坐標是         

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

一圓形紙片的圓心為點,點是圓內異于點的一定點,點是圓周上一點.把紙片折疊使點重合,然后展平紙片,折痕與交于點.當點運動時點的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

同步練習冊答案