已知數(shù)列{an}中,an>0,a1=1,an+2=
1
an+1
,a100=a96,則a2014+2a3=
 
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:利用a1=1,an+2=
1
an+1
,a100=a96,分別求出a3、a96,根據(jù)規(guī)律即可求a2014+2a3的值.
解答: 解:由a1=1,an+2=
1
an+1

得a3=
1
2
,a5=
1
1
2
+1
=
2
3
,a7=
1
2
3
+1
=
3
5

a9=
1
3
5
+1
=
5
8
,a11=
8
13
,a13=
13
21
,a15=
21
34
,
∵an+2=
1
an+1
,a100=a96,
∴a100=a96=
1
a98+1
=
1
1
a96+1
+1
,
即a962+a96-1=0,
解得a96=
-1±
5
2
,
∵an>0,
∴a96=
5
-1
2
,
∴a94=
5
-1
2
,…a2014=
5
-1
2
,
∴a2014+2a3=1+
5
-1
2
=
1+
5
2
,
故答案為:
1+
5
2
點評:本題主要考查數(shù)列遞推公式的應(yīng)用,根據(jù)遞推公式分別求出a3,a96的值是解決本題的關(guān)鍵,綜合性較強,難度較大.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足Sn=an+1且a1=1 則{an}通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系中,O為坐標原點,動點B,C分別在x軸和y軸上,且BC=2
2
,設(shè)過O,B,C三點的動圓掃過的區(qū)域邊界所代表的曲線為C.已知P是直線l:3x-4y+20=0上的動點,PM,PN是曲線C的兩條切線,M,N為切點,那么四邊形PMON面積的最小值是( 。
A、20B、16C、12D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知凼數(shù)f(x)=
3x2+2ax-a-6,x<0
3x2-(a+3)x+a,x≥0

(1)當a=1時,求f(x)的最小值;
(2)若-3≤a≤0且存在三個不同的實數(shù)x1,x2,x3,使得f(x1)=f(x2)=f(x3),求證:x1+x2+x3≥-
2
+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四種說法中,①數(shù)據(jù)4,6,6,7,9,3的眾數(shù)與中位數(shù)相等;②一組數(shù)據(jù)的標準差是這組數(shù)據(jù)的方差的平方;③數(shù)據(jù)3,5,7,9的標準差是數(shù)據(jù)6,10,14,18的標準差的一半;④頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù),其中正確的有
 
(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin(α-
2
)cos(α-π)-sin(α-2π)cos(α-
π
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-2-x
2x+2-x

(1)求函數(shù)的定義域和值域;
(2)證明:f(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

偶函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(-∞,0)上是減函數(shù),f(6)=0,設(shè)g(θ)=2cos2θ+msinθ-
17
4
m,當g(θ)<0且f[g(θ)]>0恒成立時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在?ABCD中,AB=2,AD=1,∠DAB=60°,F(xiàn)為DC的中點,E為線段BC上的一個點,若
AE
AF
=
15
4
,則
AE
AB
=
 

查看答案和解析>>

同步練習冊答案