14.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}+2\overrightarrow=0$,($\overrightarrow{a}+\overrightarrow$)$•\overrightarrow{a}$=2,則$\overrightarrow{a}•\overrightarrow$=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

分析 根據(jù)平面向量的線性運(yùn)算與數(shù)量積運(yùn)算,即可求出$\overrightarrow{a}•\overrightarrow$的值.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$+2$\overrightarrow$=$\overrightarrow{0}$,
即$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow$=$\overrightarrow{0}$,
∴$\overrightarrow{a}$+$\overrightarrow$=-$\overrightarrow$,
又($\overrightarrow{a}+\overrightarrow$)$•\overrightarrow{a}$=2,
∴-$\overrightarrow$•$\overrightarrow{a}$=2,
∴$\overrightarrow{a}•\overrightarrow$=-2.
故選:C.

點(diǎn)評(píng) 本題考查了平面向量的線性運(yùn)算和數(shù)量積運(yùn)算的問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1>0且$\frac{{a}_{6}}{{a}_{5}}$=$\frac{9}{11}$,則Sn為非負(fù)值的最大n值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某地區(qū)100位居民的人均月用水量(單位:t)的頻率分布直方圖及頻數(shù)分布表如下:
分組頻數(shù)
[0,0.5)4
[0.5,1)8
[1,1.5)15
[1.5,2)22
[2,2.5)25
[2.5,3)14
[3,3.5)6
[3.5,4)4
[4,4.5)2
合計(jì)100
(1)根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù)與平均數(shù);
(2)當(dāng)?shù)卣贫巳司掠盟繛?t的標(biāo)準(zhǔn),若超出標(biāo)準(zhǔn)加倍收費(fèi),當(dāng)?shù)卣忉屨f,85%以上的居民不超出這個(gè)標(biāo)準(zhǔn),這個(gè)解釋對(duì)嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{ln(4-x)}{x-2}$的定義域是( 。
A.(-∞,4)B.(2,4)C.(0,2)∪(2,4)D.(-∞,2)∪(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.關(guān)于x的函數(shù)y=ax,y=xa,y=loga(x-1),其中a>0,a≠1,在第一象限內(nèi)的圖象只可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知復(fù)數(shù)z滿足(1+i)z=2,則z=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,b=($\frac{4}{3}$)${\;}^{-\frac{1}{2}}$,c=ln$\frac{3}{5}$,則這三個(gè)數(shù)從大到小的順序是a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知lg(x+y)=lgx+lgy,則x+y的取值范圍是( 。
A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖的程序框圖,則輸出的n是( 。
A.5B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案