(1)已知a>b>c,且a+b+c=0,用分析法求證:<a.
(2)f(x)=,先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論,并給出證明.
(1)詳見解析;(2)都為,猜想f(x)+f(1-x)=.
解析試題分析:(1)注意題目指定用分析法證,要特別注意分析法的書寫格式:要證<a,只需證…,直到歸結(jié)到一個(gè)由已知很容易得到其成立的不等式為止;其分析的方向是將無理不等式不斷轉(zhuǎn)化為有理不等式,在轉(zhuǎn)化的過程中要注意已知條件的使用,同時(shí)不必找充要條件,只須找充分條件即可;(2)先由已知函數(shù)計(jì)算出f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值,尋找規(guī)律不難猜想出:其自變量和為1的兩個(gè)自變量所對(duì)應(yīng)的函數(shù)值之和也為定值:;證明也就只須用函數(shù)的解析式計(jì)算出f(x)+f(1-x)的值即可.
試題解析:(1)證明:要證<a,只需證b2-ac<3a2.
∵ a+b+c=0,∴ 只需證b2+a(a+b)<3a2,只需證2a2-ab-b2>0,
只需證(a-b)(2a+b)>0,只需證(a-b)(a-c)>0.
∵ a>b>c,∴ a-b>0,a-c>0,∴ (a-b)(a-c)>0顯然成立.故原不等式成立;
(2)f(0)+f(1)=+=+=+=,
同理可得:f(-1)+f(2)=,f(-2)+f(3)=.
由此猜想f(x)+f(1-x)=.
證明:f(x)+f(1-x)=+
=+=+==.
考點(diǎn):1.不等式的證明方法:分析法;2.歸納、猜想與證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否存在常數(shù),使等式對(duì)于一切都成立?若不存在,說明理由;若存在,請(qǐng)用數(shù)學(xué)歸納法證明?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com