求函數(shù)的單調(diào)遞增區(qū)間.
遞增區(qū)間為
利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求解,令解不等式就得到函數(shù)的單調(diào)遞增區(qū)間.
解令,………………4分
即: ,………………8分
故所求遞增區(qū)間為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分) 
已知函數(shù)處取得極值為2.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若函數(shù)在區(qū)間上為增函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅲ)若圖象上的任意一點(diǎn),直線l的圖象相切于點(diǎn)P,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)上有最小值,則實(shí)數(shù)的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù)
(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為常數(shù))在處取得極值,
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),的圖像恒在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求函數(shù)+3的單調(diào)遞增和遞減區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)設(shè)函數(shù),曲線過P(1,0),且在P點(diǎn)處的切斜線率為2.
(I)求a,b的值;
(II)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)
(1)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),求證:對(duì)大于的任意正整數(shù),都有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在R 上的可導(dǎo)函數(shù)滿足:當(dāng)時(shí),;當(dāng)時(shí),.則下列結(jié)論:①其中成立的個(gè)數(shù)是(  )
A.1   B.2 C.3  D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案