(本題12分)如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,
⑵ 證:平面A1CB⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。
由正四棱柱得BDAC,BDAA1,推出BD面A1 AC ,A1CBD ,又A1B1面BB1 C1C,BE得到BEA1B1,又BEB1C, BE面A1B1C,平面A1CB⊥平面BDE;;
⑵
【解析】
試題分析:
正四棱柱得BDAC,BDAA1,又,BD面A1 AC ,又A1 C面A1 AC,
A1CBD ,又A1B1面BB1 C1C,BE面BB1 C1C,BEA1B1,又BEB1C,
BE面A1B1C,A1 C面A1B1C, BEA1 C,又,A1 C面BDE,又A1 C面A1BC
平面A1CB⊥平面BDE;
⑵以DA、DC、DD1分別為x、y、z軸,建立坐標(biāo)系,則,,,
∴,
∴,設(shè)A1C平面BDE=K,由⑴可知,∠A1BK為A1B與平面BDE所成角,∴
考點:本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,角的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題通過建立空間直角坐標(biāo)系,利用向量的坐標(biāo)運算,簡化了證明過程。
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二9月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點,F(xiàn)是平面B1C1E
與直線AA1的交點。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二文科數(shù)學(xué)競賽試卷(解析版) 題型:解答題
(本題12分)如圖所示,在直四棱柱中, ,點是棱上一點.
(1)求證:面;
(2)求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三全真模擬考試數(shù)學(xué)文卷 題型:解答題
((本題12分)如圖所示,在直四棱柱中, ,點是棱上一點
(1)求證:面;
(2)求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題12分)如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M為線段AB的中點,將△ACD沿折起,使平面ACD⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆四川省巴中市四縣中高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題12分)如圖2,在棱長為1的正方體ABCD—A1B1C1D1中,點E、F、G分別是DD1、BD、BB1的中點。
(Ⅰ)求直線EF與直線CG所成角的余弦值;
(Ⅱ)求直線C1C與平面GFC所成角的正弦值;
(Ⅲ)求二面角E—FC—B的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com