【題目】歐陽修《賣油翁》中寫道:()乃取一葫蘆置于地,以錢覆其口,徐以杓酌滴瀝之,自錢孔入,而錢不濕.已知銅錢是直徑為4 cm的圓面,中間有邊長為1 cm的正方形孔,若隨機向銅錢上滴一滴油(油滴整體落在銅錢內(nèi)),則油滴整體(油滴是直徑為0.2 cm的球)正好落入孔中的概率是_____(不作近似計算)

【答案】

【解析】

根據(jù)幾何概型的計算公式,求出油滴落處的總面積和油滴正好落在孔中面積的大小,代入公式,即可求解,注意考慮油滴的體積影響.

隨機向銅錢上滴一滴油,且油滴整體落在銅錢內(nèi),則油滴球心在以圓面圓心為圓心,

半徑為20.11.9的圓內(nèi),即

若油滴整體正好落入孔中,則油滴在與正方形孔邊沿距離為0.1的正方形內(nèi),

所以概率是 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】作家馬伯庸小說《長安十二時辰》中,靖安司通過長安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三梭柱ABCA1B1C1中,ACBC,E,F分別為AB,A1B1的中點.

1)求證:AF∥平面B1CE

2)若A1B1,求證:平面B1CE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:

I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學期望;

II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,設函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)是否存在整數(shù),對于任意,關于的方程在區(qū)間上有唯一實數(shù)解?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后的函數(shù)圖象.

給出下列四種說法:

①圖(2)對應的方案是:提高票價,并提高成本;

②圖(2)對應的方案是:保持票價不變,并降低成本;

③圖(3)對應的方案是:提高票價,并保持成本不變;

④圖(3)對應的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后的函數(shù)圖象.

給出下列四種說法:

①圖(2)對應的方案是:提高票價,并提高成本;

②圖(2)對應的方案是:保持票價不變,并降低成本;

③圖(3)對應的方案是:提高票價,并保持成本不變;

④圖(3)對應的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌電腦體驗店預計全年購入臺電腦,已知該品牌電腦的進價為/臺,為節(jié)約資金決定分批購入,若每批都購入為正整數(shù))臺,且每批需付運費元,儲存購入的電腦全年所付保管費與每批購入電腦的總價值(不含運費)成正比(比例系數(shù)為),若每批購入臺,則全年需付運費和保管費.

1)記全年所付運費和保管費之和為元,求關于的函數(shù).

2)若要使全年用于支付運費和保管費的資金最少,則每批應購入電腦多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=,若關于的方程恰好有 4 個不相等的實數(shù)解,則實數(shù)的取值范圍為( )

A. B. C. D. (0,

查看答案和解析>>

同步練習冊答案