【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100,水溫與時間近似滿足一次函數(shù)關系;②用開水將熱飲沖泡后在室溫下放置,溫度與時間近似滿足函數(shù)的關系式為 為常數(shù)), 通常這種熱飲在40時,口感最佳,某天室溫為時,沖泡熱飲的部分數(shù)據(jù)如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時飲用,最少需要的時間為

A. 35 B. 30

C. 25 D. 20

【答案】C

【解析】

由函數(shù)圖象可知這是一個分段函數(shù),第一段是正比例函數(shù)的一段,第二段是指數(shù)型函數(shù)的一段,即滿足且過點(5,100)和點(15,60),代入解析式即可得到函數(shù)的解析式.令y=40,求出x,即為在口感最佳時飲用需要的最少時間

由題意,當0≤t≤5時,函數(shù)圖象是一個線段,當t≥5時,函數(shù)的解析式為,

(5,100)和點(15,60),代入解析式,

解得a=5,b=20,

故函數(shù)的解析式為,t≥5.令y=40,解得t=25,

最少需要的時間為25min

故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐S-ABCD中,平面,底面ABCD為直角梯形,,,且

(Ⅰ)求與平面所成角的正弦值.

(Ⅱ)若ESB的中點,在平面內(nèi)存在點N,使得平面,求N到直線AD,SA的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的定義域為,且對任意,有,且當時,,

(Ⅰ)證明是奇函數(shù);

(Ⅱ)證明上是減函數(shù);

(III)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在(2,2)上的奇函數(shù).當x(20)時,f(x)=-loga(x)loga(2x),其中a>1.

1)求函數(shù)f(x)的零點.

2)若t(02),判斷函數(shù)f(x)在區(qū)間(0t]上是否有最大值和最小值.若有,請求出最大值和最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2008

2009

2010

2011

2012

2013

2014

年份代號

1

2

3

4

5

6

7

人均純收入

2.7

3.6

3.3

4.6

5.4

5.7

6.2

對變量進行相關性檢驗,得知 之間具有線性相關關系.

(1)求關于的線性回歸方程;

(2)預測該地區(qū)2017年的居民人均純收入.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)求的值;

(Ⅱ)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;

(Ⅲ)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

參考公式及數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)若曲線為曲線關于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCDAD∥BC,ABADAC=3,PABC=4,M為線段AD上一點,AM=2MDNPC的中點.

(Ⅰ)證明MN∥平面PAB;

(Ⅱ)求四面體N-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設關于某產(chǎn)品的明星代言費(百萬元)和其銷售額(百萬元),有如下表的統(tǒng)計表格:

表中

(1)在給出的坐標系中,作出銷售額關于廣告費的回歸方程的散點圖,根據(jù)散點圖指出:哪一個適合作銷售額關于明星代言費的回歸方程(不需要說明理由);并求關于的回歸方程(結果精確到0.1)

(2)已知這種產(chǎn)品的純收益(百萬元)與,有如下關系:,用(1)中的結果估計當取何值時,純收益取最大值?

附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

同步練習冊答案