已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過(guò)點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為,問(wèn):是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.

(Ⅰ) 雙曲線的方程為:; (Ⅱ) 為定值,定值為

解析試題分析:(Ⅰ)根據(jù)拋物線的焦點(diǎn)為,得出雙曲線的焦點(diǎn)為、,再設(shè)在拋物線上,根據(jù),結(jié)合拋物線的定義得,的值,最后根據(jù)雙曲線定義結(jié)合點(diǎn)A在雙曲線上,得,可求雙曲線方程; (Ⅱ)設(shè)圓的方程為:,根據(jù)雙曲線的漸近線方程和直線與圓相切的條件,得圓的半徑為,從而求出圓的方程.過(guò)點(diǎn)P作互相垂直且分別與圓、圓相交的直線l1和l2,設(shè)其中的一條斜率為,則另一條的斜率為,利用直線的點(diǎn)斜式方程,將直線的方程與圓方程聯(lián)解,可以得出弦長(zhǎng)為s和t關(guān)于k的表達(dá)式,將其代入進(jìn)行化簡(jiǎn),可以得到定值
試題解析:(Ⅰ)∵拋物線的焦點(diǎn)為,
∴雙曲線的焦點(diǎn)為,                         1分
設(shè)在拋物線上,且
由拋物線的定義得,,∴,∴,∴,      3分
,                              4分
又∵點(diǎn)在雙曲線上,由雙曲線定義得:
,∴,∴雙曲線的方程為:.          6分
(Ⅱ)為定值.下面給出說(shuō)明.
設(shè)圓的方程為:,∵圓與直線相切,
∴圓的半徑為,故圓.       7分
顯然當(dāng)直線的斜率不存在時(shí)不符合題意,                     8分
設(shè)的方程為,即,
設(shè)的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為,
(1)求雙曲線C的方程;
(2)已知直線與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在以雙曲線C的實(shí)軸長(zhǎng)為直徑的圓上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓心坐標(biāo)為的圓軸及直線均相切,切點(diǎn)分別為、,另一圓與圓、軸及直線均相切,切點(diǎn)分別為、

(1)求圓和圓的方程;
(2)過(guò)點(diǎn)作的平行線,求直線被圓截得的弦的長(zhǎng)度;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),.
(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)為橢圓上的動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖已知拋物線的焦點(diǎn)坐標(biāo)為,過(guò)的直線交拋物線兩點(diǎn),直線分別與直線相交于兩點(diǎn).

(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在軸上方有一段曲線弧,其端點(diǎn)、軸上(但不屬于),對(duì)上任一點(diǎn)及點(diǎn),,滿足:.直線分別交直線,兩點(diǎn).

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)且斜率為)的直線與橢圓相交于兩點(diǎn),直線、分別交直線 于、兩點(diǎn),線段的中點(diǎn)為.記直線的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)是橢圓上一點(diǎn),分別為的左右焦點(diǎn),的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案