已知橢圓C:的離心率為,且經(jīng)過點(diǎn)M(-2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于A(x1,y1),B(x2,y2)兩點(diǎn),連接MA,MB并延長交直線x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且.求△ABM的面積.
【答案】分析:(Ⅰ)利用橢圓C:的離心率為,且經(jīng)過點(diǎn)M(-2,0),可求橢圓的幾何量,從而可求橢圓方程;
(Ⅱ)直線方程與橢圓方程聯(lián)立,利用 ,及韋達(dá)定理,即可求解△ABM的面積.
解答:解:(Ⅰ)∵橢圓C:的離心率為,且經(jīng)過點(diǎn)M(-2,0).
∴a=2,,∴.                        …(2分)
∵a2=b2+c2,∴.                            …(3分)
橢圓方程為.                                      …(5分)
(Ⅱ)因?yàn)橹本l的斜率為1,可設(shè)l:y=x+m,…(6分)
,消y得3x2+4mx+2m2-4=0,…(7分)
由△>0,得m2<6.
因?yàn)锳(x1,y1),B(x2,y2),所以,.                        …(8分)
設(shè)直線MA:,則;同理.…(9分)
因?yàn)?nbsp;,所以 ,即.     …(10分)
所以 (x1-4)y2+(x2-4)y1=0,
所以 (x1-4)(x2+m)+(x2-4)(x1+m)=0,
所以2x1x2+m(x1+x2)-4(x1+x2)-8m=0,
所以,
所以 ,所以 .              …(12分)
所以 ,
設(shè)△ABM的面積為S,直線l與x軸交點(diǎn)記為N,
所以.…(13分)
所以△ABM的面積為.…(14分)
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查三角形面積的計(jì)算,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個交點(diǎn),以這四個交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:選擇題

已知橢圓C:的離心率為,過右焦點(diǎn)且斜率為的直線與橢圓C相交于、兩點(diǎn).若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點(diǎn)為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個焦點(diǎn)的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線與橢圓C交于兩點(diǎn),點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊答案