10.在三角形ABC中若B=30°,AB=2$\sqrt{3}$,AC=2.則滿足條件的三角形的個(gè)數(shù)有( 。
A.0B.1C.2D.3

分析 由已知利用正弦定理可得sinC=$\frac{\sqrt{3}}{2}$,結(jié)合大邊對(duì)大角及C的范圍可求C有兩解,從而得解滿足條件的三角形的個(gè)數(shù)有2個(gè).

解答 解:∵B=30°,AB=2$\sqrt{3}$,AC=2.
∴由正弦定理可得:sinC=$\frac{ABsinB}{AC}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵C∈(0°,180°),AB>AC,
∴C∈(30°,180°),可得:C=60°或120°,
故滿足條件的三角形的個(gè)數(shù)有2個(gè).
故選:C.

點(diǎn)評(píng) 本題主要考查了正弦定理,大邊對(duì)大角在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x+x2,若存在正數(shù)a,b,使得當(dāng)x∈[a,b]時(shí),f(x)的值域?yàn)?[{\frac{1},\frac{1}{a}}]$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A.$\frac{82}{3}$B.26C.80D.$\frac{80}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,b=4且$\frac{cosB}{cosC}=\frac{4}{2a-c}$.
(1)求角B的大。
(2)求△ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是C1D的中點(diǎn),P是棱CC1所在直線上的動(dòng)點(diǎn).則下列三個(gè)命題:
(1)CD⊥PE           
(2)EF∥平面ABC1
(3)V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
其中正確命題的個(gè)數(shù)有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三邊所在直線方程分別為AB:4x-3y+10=0,BC:y-2=0,CA:3x-4y-5=0.
(1)求∠A的正切值的大小;
(2)求△ABC的重心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知p:x≤-1,q:a≤x<a+2,若q是p的充分不必要條件,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,1]B.[3,+∞)C.(-∞,-3]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在平面平直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,在頂點(diǎn)為A(-2,0),過點(diǎn)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)已知點(diǎn)P為AD的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的k(k≠0)都有OP⊥EQ?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由;
(3)若過點(diǎn)O作直線l的平行線交橢圓C于點(diǎn)M,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知兩點(diǎn)A(0,1),B(4,3),則線段AB的垂直平分線方程是( 。
A.x-2y+2=0B.2x+y-6=0C.x+2y-2=0D.2x-y+6=0

查看答案和解析>>

同步練習(xí)冊(cè)答案