(12分)設(shè)、分別是橢圓的左、右焦點(diǎn).
(Ⅰ)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;
(Ⅱ)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且∠為鈍角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
(Ⅰ)易知所以,設(shè)
 (2分)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823145158288336.gif" style="vertical-align:middle;" />,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值
當(dāng),即點(diǎn)為橢圓長(zhǎng)軸端點(diǎn)時(shí),有最大值.                     (4分)
(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線
聯(lián)立,消去,整理得:
                                    (6分)
得:            ①      (7分)

                                            (8分)
(10分)
,即              ②                      (11分)
故由①、②得 ∴的取值范圍是.                 (12分)
略       
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓W的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,兩條準(zhǔn)線間的距離為6. 橢圓W的左焦點(diǎn)為,過左準(zhǔn)線與軸的交點(diǎn)任作一條斜率不為零的直線與橢圓W交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)中心在原點(diǎn)的橢圓離心率為e,左、右兩焦點(diǎn)分別為F1、F2,拋物線F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若PF2x軸成45°,則e的值為    ▲    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,第(1)小題9分,第(2)小題9分)
設(shè)復(fù)數(shù)與復(fù)平面上點(diǎn)對(duì)應(yīng).
(1)設(shè)復(fù)數(shù)滿足條件(其中,常數(shù)),當(dāng)為奇數(shù)時(shí),動(dòng)點(diǎn)的軌跡為;當(dāng)為偶數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,且兩條曲線都經(jīng)過點(diǎn),求軌跡的方程;
(2)在(1)的條件下,軌跡上存在點(diǎn),使點(diǎn)與點(diǎn)的最小距離不小于,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知點(diǎn)是橢圓上的動(dòng)點(diǎn)。
(1)求的取值范圍
(2)若恒成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左焦點(diǎn),右頂點(diǎn)A,上頂點(diǎn)B,且,則橢圓的離心率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的兩焦點(diǎn)為,現(xiàn)將坐標(biāo)平面沿軸折成二面角,二面角的度數(shù)為,已知折起后兩焦點(diǎn)的距離,則滿足題設(shè)的一組數(shù)值:              (只需寫出一組就可以,不必寫出所有情況)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的參數(shù)方程是 (為參數(shù)),則它的離心率為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的長(zhǎng)軸長(zhǎng)為           

查看答案和解析>>

同步練習(xí)冊(cè)答案