如圖是某個(gè)正方體的側(cè)面展開圖,l1,l2是兩條側(cè)面對(duì)角線,則在正方體中,l1l2(  )

(A)互相平行

(B)異面且互相垂直

(C)異面且夾角為

(D)相交且夾角為

 

D

【解析】將側(cè)面展開圖還原成正方體如圖所示,

B,C兩點(diǎn)重合,l1l2相交.連接AD,ABD為正三角形,所以l1l2的夾角為.故選D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(九)第二章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

若不等式x2+ax+10對(duì)于一切x(0,]恒成立,a的最小值是(  )

(A)0 (B)2 (C)- (D)-3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(一)第一章第一節(jié)練習(xí)卷(解析版) 題型:解答題

設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中xR,如果AB=B,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十四第七章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

在正方體ABCD-A1B1C1D1,E,F分別為棱AA1,CC1的中點(diǎn),則在空間中與三條直線A1D1,EF,CD都相交的直線(  )

(A)不存在 (B)有且只有兩條

(C)有且只有三條 (D)有無數(shù)條

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十四第七章第三節(jié)練習(xí)卷(解析版) 題型:填空題

已知線段AB,CD分別在兩條異面直線上,M,N分別是線段AB,CD的中點(diǎn),MN    (AC+BD)(填“>”“<”或“=).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十六第七章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

已知兩條直線m,n,兩個(gè)平面α,β,給出下面四個(gè)命題:

mn,m⊥αn⊥α;

②α∥β,m?α,n?βmn;

mn,m∥αn∥α;

④α∥β,mn,m⊥αn⊥β.

其中正確命題的序號(hào)是(  )

(A)①③ (B)②④ (C)①④ (D)②③

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十六第七章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,四邊形ABCD,AB=AD=CD=1,BD=,BDCD.將四邊形ABCD沿對(duì)角線BD折成四面體A'-BCD,使平面A'BD⊥平面BCD,則下列結(jié)論正確的是(  )

(A)A'CBD

(B)BA'C=90°

(C)CA'與平面A'BD所成的角為30°

(D)四面體A'-BCD的體積為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十八第七章第七節(jié)練習(xí)卷(解析版) 題型:選擇題

若直線l⊥平面α,直線l的方向向量為s,平面α的法向量為n,則下列結(jié)論正確的是(  )

(A)s=(1,0,1),n=(1,0,-1)

(B)s=(1,1,1),n=(1,1,-2)

(C)s=(2,1,1),n=(-4,-2,-2)

(D)s=(1,3,1),n=(2,0,-1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十九第七章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,AC=BC=2,ACB=90°,F,G分別是線段AE,BC的中點(diǎn),ADGF所成的角的余弦值為(  )

(A) (B)- (C) (D)-

 

查看答案和解析>>

同步練習(xí)冊(cè)答案