如圖,斜率為的直線過(guò)拋物線
的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, M為拋物線弧AB上的動(dòng)點(diǎn).
(Ⅰ).若,求拋物線的方程;
(Ⅱ).求△ABM面積的最大值.
(I) ;(II)
.
解析試題分析:(I) 寫(xiě)出直線的方程
聯(lián)立
,消去
得
.根據(jù)弦長(zhǎng)公式
,解得
,所以
.(II)根據(jù)(I) 設(shè)
到
的距離:
而M在直線AB上方,所以
即
則
,所以當(dāng)
時(shí),
取最大值
此時(shí)
.
試題解析:(I) 根據(jù)條件得則
,消去
得
.
令,則
,又拋物線定義得
根據(jù),解得
,拋物線方程
.
(II)由(I) 知設(shè)
則
到
的距離:
由M在直線AB上方,所以即
,
由(I)知當(dāng)
時(shí),
取最大值
此時(shí)
.
考點(diǎn):1.直線與拋物線的聯(lián)立;2.面積的求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右兩焦點(diǎn)分別為
,
是橢圓上一點(diǎn),且在
軸上方,
.
(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時(shí),過(guò)
的圓
的截
軸的線段長(zhǎng)為6,求橢圓的方程;
(3)在(2)的條件下,過(guò)橢圓右準(zhǔn)線上任一點(diǎn)
引圓
的兩條切線,切點(diǎn)分別為
.試探究直線
是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,斜率為的直線過(guò)拋物線
的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, M為拋物線弧AB上的動(dòng)點(diǎn).
(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)F(2,0)和定直線,動(dòng)圓P過(guò)定點(diǎn)F與定直線相切,記動(dòng)圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點(diǎn),且線段AB是此圓的直徑時(shí),求直線AB的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)
到直線
的距離為
.設(shè)
為直線
上的點(diǎn),過(guò)點(diǎn)
作拋物線
的兩條切線
,其中
為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點(diǎn)為直線
上的點(diǎn),求直線
的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線
上移動(dòng)時(shí),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓拋物線
的焦點(diǎn)均在
軸上,
的中心和
的頂點(diǎn)均為坐標(biāo)原點(diǎn)
從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在周長(zhǎng)為定值的DDEC中,已知,動(dòng)點(diǎn)C的運(yùn)動(dòng)軌跡為曲線G,且當(dāng)動(dòng)點(diǎn)C運(yùn)動(dòng)時(shí),
有最小值
.
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標(biāo)系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中
)于A、B兩點(diǎn),求|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線與雙曲線
有公共焦點(diǎn)
,點(diǎn)
是曲線
在第一象限的交點(diǎn),且
.
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點(diǎn)
為圓心的圓
與直線
相切,圓
.過(guò)點(diǎn)
作互相垂直且分別與圓
、圓
相交的直線
和
,設(shè)
被圓
截得的弦長(zhǎng)為
,
被圓
截得的弦長(zhǎng)為
,問(wèn):
是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)A(,0),B(
,0),直線AM、BM相交于點(diǎn)M,且它們的斜率之積為
.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)若直線過(guò)點(diǎn)F(1,0)且繞F旋轉(zhuǎn),
與圓
相交于P、Q兩點(diǎn),
與軌跡C相交于R、S兩點(diǎn),若|PQ|
求△
的面積的最大值和最小值(F′為軌跡C的左焦點(diǎn)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com