3.在三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a2+c2=4ac,三角形的面積為$S=\frac{{\sqrt{3}}}{2}accosB$,則sinAsinC的值為$\frac{1}{4}$.

分析 由已知及三角形面積公式可求tanB=$\sqrt{3}$,結(jié)合范圍0<B<π,可求B=$\frac{π}{3}$,由已知及余弦定理可求b2=3ac.由正弦定理可得sin2B=3sinAsinC,從而得解sinAsinC的值.

解答 解:在三角形ABC中,$S=\frac{{\sqrt{3}}}{2}accosB$=$\frac{1}{2}$acsinB,
∴tanB=$\sqrt{3}$,
∵B為三角形內(nèi)角,
∴0<B<π,
∴B=$\frac{π}{3}$.
∵a2+c2=4ac,
又∵a2+c2=b2+2accosB,
∴b2+2accosB=4ac,
∴b2=3ac.
由正弦定理可得sin2B=3sinAsinC,
∴sinAsinC=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)的定義域?yàn)镽,且為可導(dǎo)函數(shù),若對(duì)?x∈R,總有(2-x)f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),則(  )
A.f(x)>0恒成立B.f(x)<0恒成立
C.f(x)的最大值為0D.f(x)與0的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知直線$l:\left\{\begin{array}{l}x=2+t\\ y=-1-t\end{array}\right.$(t是參數(shù)),曲線C的極坐標(biāo)方程是ρ=1,那么直線l與曲線C的公共點(diǎn)的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,300°角終邊上一點(diǎn)P的坐標(biāo)為(1,m),則實(shí)數(shù)m的值為-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)$f(x)=\frac{sinx}{x}$的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)F(1,0),長(zhǎng)軸的左、右端點(diǎn)分別為A1,A2;且$\overrightarrow{F{A_1}}•\overrightarrow{F{A_2}}=-1$.
(1)求橢圓E的方程;
(2)已知點(diǎn)B(0,-1),經(jīng)過(guò)點(diǎn)(1,1)且斜率為k的直線與橢圓E交于不同的兩P、Q點(diǎn)(均異于點(diǎn)B),證明:直線BP與BQ的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若A(1,2),B(2,3),C(-3,5),則△ABC為( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.不等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題正確的是( 。
A.若a∥α,b∥β,則a∥bB.若a?α,b?β,a∥b,則α∥β
C.若a∥b,b∥α,α∥β,則a∥βD.若a⊥α,a⊥β,b⊥β,則b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓C關(guān)于y軸對(duì)稱,經(jīng)過(guò)P(1,0)點(diǎn),且被直線y=x分成兩段弧長(zhǎng)之比為1:2.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C的圓心在x軸下方,過(guò)點(diǎn)P(-2,1)作直線l與圓C相切,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案