若復(fù)數(shù)z滿足z-
3
(1+z)i=1
,則z+z2的值等于(  )
分析:設(shè)z=a+bi,由z-
3
(1+z)i=1
,得(a+
3
b-1)+[b-
3
(1+a)]i=0,由此求出z,從而能夠求出z+z2
解答:解:設(shè)z=a+bi,
z-
3
(1+z)i=1

∴a+bi-
3
(1+a+bi)i=1,
即(a+
3
b-1)+[b-
3
(1+a)]i=0,
a+
3
b-1=0
b-
3
-
3
a=0

解得a=-
1
2
,b
3
2
,
∴z=-
1
2
+
3
2
i
,
∴z+z2=-
1
2
+
3
2
i
+(-
1
2
+
3
2
i
2
=-
1
2
+
3
2
i
+
1
4
-
3
2
i
-
3
4

=-1.
故選C.
點(diǎn)評(píng):本題考查復(fù)數(shù)的混合運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足|z-3+4i|=1(i是虛數(shù)單位),則|z|最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足|z+4+3i|=3,則復(fù)數(shù)z的模應(yīng)滿足的不等式是( 。
A、5≤|z|≤8B、2≤|z|≤8C、|z|≤5D、|z|<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足|z+3-4i|=2,則|z|的最大值為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足z=
3+i
i
 (其中i是虛數(shù)單位),
.
z
為z的共軛復(fù)數(shù),則|
.
z
|
=
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)若復(fù)數(shù)z滿足z=
3+i
i
,則|
.
 z 
|
=
10
10

查看答案和解析>>

同步練習(xí)冊(cè)答案