【題目】已知命題P:函數(shù)f(x)=log2m(x+1)是增函數(shù);命題Q:x∈R,x2+mx+1≥0.
(1)寫出命題Q的否命題¬Q;并求出實(shí)數(shù)m的取值范圍,使得命題¬Q為真命題;
(2)如果“P∨Q”為真命題,“P∧Q”為假命題,求實(shí)數(shù)m的取值范圍

【答案】
(1)解:Q:x0∈R,x02+mx0+1<0.

若Q為真命題,則△=m2﹣4>0,解得:m<﹣2,或m>2.

故所求實(shí)數(shù)m的取值范圍為:(﹣∞,﹣2)∪(2,+∞).


(2)解:若函數(shù)f(x)=log2m(x+1)是增函數(shù),則 2m>1,

x∈R,x2+mx+1≥0為真命題時(shí),由△=m2﹣4≤0,

求得m的取值范圍為B={m|﹣2≤m≤2}.

由“P∨Q”為真命題,“P∧Q”為假命題,故命題P、Q中有且僅有一個(gè)真命題.

當(dāng)P真Q假時(shí),實(shí)數(shù)m的取值范圍為:

當(dāng)P假Q(mào)真時(shí),實(shí)數(shù)m的取值范圍為:

綜上可知實(shí)數(shù)m的取值范圍:[﹣2, ]∪(2,+∞).


【解析】(1)否命題Q,就是把命題Q的條件和結(jié)論都否定,聯(lián)系對(duì)應(yīng)二次函數(shù)圖象,由△=m2﹣4>0,解得m的

取值范圍.(2)命題P和命題Q中,一個(gè)為真命題,一個(gè)為假命題,分命題P是真命題且命題Q是假命題、命題P是

假命題且命題Q是真命題,兩種情況,計(jì)算可得答案.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用交、并、補(bǔ)集的混合運(yùn)算和對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法;過(guò)定點(diǎn)(1,0),即x=1時(shí),y=0;a>1時(shí)在(0,+∞)上是增函數(shù);0>a>1時(shí)在(0,+∞)上是減函數(shù)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面 平面 ,四邊形 為平行四邊形, , , .

(1)求證: 平面 ;
(2)求 到平面 的距離;
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCDABCD′中:

(1)求二面角D′-ABD的大小;

(2)若MCD′的中點(diǎn),求二面角MABD的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對(duì)稱點(diǎn)仍在圓上,且直線xy+1=0被圓截得的弦長(zhǎng)為2,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長(zhǎng)為aMBD1的中點(diǎn),NA1C1上,且滿足|A1N|=3|NC1|.

(1)求MN的長(zhǎng);

(2)試判斷△MNC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(2)對(duì)一切實(shí)數(shù)x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明對(duì)一切x∈(0,+∞),lnx> 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖正方形的邊長(zhǎng)為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:

所成角的正切值是;

;

的體積是;

平面平面

直線與平面所成角為

其中正確的有 .(填寫你認(rèn)為正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A(n)表示正整數(shù)n的個(gè)位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項(xiàng)和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x﹣1)的對(duì)稱軸為x=1,f(x+1)= (f(x)≠0),且在區(qū)間(1,2)上單調(diào)遞減,已知α、β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關(guān)系是(
A.f(sinα)>f(cosβ)
B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)
D.以上情況均有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案