【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面 的中點(diǎn), 是棱上的點(diǎn), , , .

(Ⅰ)求證:平面平面;

(Ⅱ)若異面直線所成角的余弦值為,求的值.

【答案】1)見(jiàn)解析(2.

【解析】試題分析:(1)推導(dǎo)出四邊形BCDQ為平行四邊形,從而CD∥BQ.又QB⊥AD.從而BQ⊥平面PAD,由此能證明平面PQB⊥平面PAD;(2)以Q為原點(diǎn),QAx軸,QBy軸,QPz軸,建立空間直角坐標(biāo)系.利用向量法能求出t的值,即可得到比值。

解析:

(Ⅰ)證明:∵, 的中點(diǎn),

∴四邊形為平行四邊形,∴.

,∴,即.

又∵平面平面,且平面平面.

平面.

平面,∴平面平面.

(Ⅱ)∵, 的中點(diǎn),∴.

∵平面平面,且平面平面.

平面.

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則, , , ,設(shè),

, .

上的點(diǎn),設(shè),化簡(jiǎn)得.

設(shè)異面直線所成角為,

.

,計(jì)算得,故.

注:若只算出一個(gè)答案,扣1分;算出兩個(gè)值即得滿分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 有極值,且函數(shù)的極值點(diǎn)是的極值點(diǎn),其中是自然對(duì)數(shù)的底數(shù).(極值點(diǎn)是指函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值)

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),若函數(shù)的最小值為,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】了解某市今年初二年級(jí)男生的身體素質(zhì)狀況,從該市初二年級(jí)男生中抽取了一部分學(xué)生進(jìn)行擲實(shí)心球的項(xiàng)目測(cè)試.成績(jī)低于6米為不合格,成績(jī)?cè)?/span>68米(含6米不含8米)的為及格,成績(jī)?cè)?/span>8米至12米(含8米和12米,假定該市初二學(xué)生擲實(shí)心球均不超過(guò)12米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫(huà)出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績(jī)?cè)?/span>10米到12米之間.

)求實(shí)數(shù)的值及參加擲實(shí)心球項(xiàng)目測(cè)試的人數(shù);

)根據(jù)此次測(cè)試成績(jī)的結(jié)果,試估計(jì)從該市初二年級(jí)男生中任意選取一人,擲實(shí)心球成績(jī)?yōu)閮?yōu)秀的概率;

)若從此次測(cè)試成績(jī)最好和最差的兩組男生中隨機(jī)抽取2 名學(xué)生再進(jìn)行其它項(xiàng)目的測(cè)試,求所抽取的2名學(xué)生來(lái)自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若曲線在點(diǎn) 處的切線方程為.

(Ⅰ)求的解析式;

(Ⅱ)求證:在曲線上任意一點(diǎn)處的切線與直線所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二期中考試后,教務(wù)處計(jì)劃對(duì)全年級(jí)數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,從男、女生中各隨機(jī)抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績(jī)的頻率分布直方圖,如圖所示.

(1)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市創(chuàng)業(yè)園區(qū)新引進(jìn)一家生產(chǎn)環(huán)保產(chǎn)品的公司,已知該環(huán)保產(chǎn)品每售出1盒的利潤(rùn)為0.3萬(wàn)元,當(dāng)月未售出的環(huán)保產(chǎn)品,每盒虧損0.12萬(wàn)元.根據(jù)統(tǒng)計(jì)資料,該環(huán)保產(chǎn)品的市場(chǎng)月需求量的頻率分布直方圖如圖所示.

1)若該環(huán)保產(chǎn)品的月進(jìn)貨量為160盒,以(單位:盒,)表示該產(chǎn)品一個(gè)月內(nèi)的市場(chǎng)需求量,(單位:萬(wàn)元)表示該公司生產(chǎn)該環(huán)保產(chǎn)品的月利潤(rùn).

①將表示為的函數(shù);

②根據(jù)頻率分布直方圖估計(jì)利潤(rùn)不少于39.6萬(wàn)元的概率.

2)在頻率分布直方圖的月需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的月需求量,當(dāng)月進(jìn)貨量為158箱時(shí),寫(xiě)出月利潤(rùn)(單位:萬(wàn)元)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知cosx2cosx),2cosxsinx),fx

1)把fx)的圖象向右平移個(gè)單位得gx)的圖象,求gx)的單調(diào)遞增區(qū)間;

2)當(dāng)共線時(shí),求fx)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018衡水金卷(三)如圖所示,在三棱錐中,平面平面, , ,

I)證明: 平面;

II)若二面角的平面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案