精英家教網 > 高中數學 > 題目詳情
由定積分的性質和幾何意義,說明下列各式的值:
(1)
a
-a
a2-x2
dx;                   
(2)
1
0
[
1-(x-1)2
-x]dx.
考點:定積分
專題:計算題,選作題
分析:(1)根據定積分定義直接計算即可;
(2)將定積分分為兩個積分的和,再分別求出定積分,即可得到結論.
解答: 解:(1)
a
-a
a2-x2
dx表示以(0,0)為圓心,以
.
a
.
為半徑的圓的面積的一半,
a
-a
a2-x2
dx=
π
2
a2
(2)
1
0
[
1-(x-1)2
-x]dx=
1
0
1-(x-1)2
dx
+
1
0
(-x)dx
   …(*)
1
0
1-(x-1)2
dx
表示以(1,0)為圓心,以1為半徑的圓的面積的四分之一.
1
0
1-(x-1)2
dx
=
π
4

故(*)的值為
π
4
+
1
0
d(-
x2
2
)
=
π
4
-
1
2

1
0
[
1-(x-1)2
-x]dx=
π
4
-
1
2
點評:本題考查定積分的幾何意義,考查定積分的計算,考查定積分的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合A={y|y=sinx},B={x|(x+3)(2x-1)≤0},則A∩B=(  )
A、[-3,
1
2
]
B、[-1,
1
2
]
C、[-1,
1
2
D、(-3,
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,已知AB=
6
,AC=4
2
,A=45°,若平面上一點P滿足
BP
BC
+(1-λ)
BA
(λ>0),且△ABP的面積為
3
6
2
,則λ等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在三棱錐A-BCD的各邊AB,BC,CD,DA上分別取E,F(xiàn),G,H四點,如果EF∩HG=P,則點P(  )
A、一定在直線BD上
B、一定在直線AC上
C、在直線AC或BD上
D、不在直線AC上,也不在直線BD上

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x•sinx,有下列三個結論:
①存在常數T>0,對任意的實數x,恒有f(x+T)=f(x)成立;
②對任意給定的正數M,都存在實數x0,使得|f(x0)|≥M;
③直線y=x與函數f(x)的圖象相切,且切點有無數多個.
則所有正確結論的序號是( 。
A、①B、②C、③D、②③

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,上頂點為A,在x軸的負半軸上有一點B,滿足
BF1
=
F1F2
,且
AB
AF2
=0
(1)若過A,B,F(xiàn)2三點的圓C恰好與直線l:x-
3
y-3=0相切,求圓C的方程及橢圓D的方程;
(2)若過點T(3,0)的直線與橢圓D相交于兩點M,N,設P為橢圓上一點,且滿足
OM
+
ON
=t•
OP
(O為坐標原點),求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示莖葉圖記錄了甲、乙兩學習小組各4名同學在某次考試中的數學成績,乙組記錄中有一個數字模糊,無法確認,假設這個數字具有隨機性,并在圖中用m(m∈N)表示.
(1)求乙組平均成績超過甲組平均成績的概率;
(2)當m=3時,分別從甲、乙兩組同學中各隨機選取一名同學,求這兩名同學的數學成績之差的絕對值超過2分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,平行四邊形ABCD中,E、F分別是AD,AB的中點,G為BE與DF的交點.若
AB
=a,
AD
=b.
(1)試以a,b為基底表示
BE
DF
;
(2)求證:A,G,C三點共線.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=
6
3
,過F1 的直線交橢圓于A,B兩點,且△ABF2的周長為4
3

(1)求橢圓E的方程;
(2)過點P(0,2)的動直線l與橢圓E相交于C,D兩點,O為原點,求△COD面積的最大值.

查看答案和解析>>

同步練習冊答案