【題目】“辛卜生公式”給出了求幾何體體積的一種計(jì)算方法:夾在兩個(gè)平行平面之間的幾何體,如果被平行于這兩個(gè)平面的任何平面所截,截得的截面面積是截面高(不超過三次)的多項(xiàng)式函數(shù),那么這個(gè)幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即:,式中,,,依次為幾何體的高,下底面積,上底面積,中截面面積.如圖,現(xiàn)將曲線與直線軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到一個(gè)幾何體.利用辛卜生公式可求得該幾何體的體積( )

A.B.C.D.

【答案】C

【解析】

根據(jù)“辛卜生公式”:,根據(jù)旋轉(zhuǎn)體特點(diǎn),結(jié)合已知,即可求得答案.

根據(jù)辛卜生公式:

根據(jù)題意可知該幾何體是由,曲線與直線軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到.

,,,

根據(jù)辛卜生公式

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題P:函數(shù)|fa|2,命題Q:集合A={x|x2+a+2x+1=0,xR}B={x|x0}AB=,

1)分別求命題P、Q為真命題時(shí)的實(shí)數(shù)a的取值范圍;

2)當(dāng)實(shí)數(shù)a取何范圍時(shí),命題P、Q中有且僅有一個(gè)為真命題;

3)設(shè)P、Q皆為真時(shí)a的取值范圍為集合S,,若RTS,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我們的教材必修一中有這樣一個(gè)問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:

方案一:每天回報(bào)元;

方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;

方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.

記三種方案第天的回報(bào)分別為,,.

1)根據(jù)數(shù)列的定義判斷數(shù)列,的類型,并據(jù)此寫出三個(gè)數(shù)列的通項(xiàng)公式;

2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序號(hào)

1

2

3

4

5

6

7

8

9

10

工業(yè)增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

5.5

20.6

82.5

211.52

129.6

(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對(duì)工業(yè)增加值(萬億元)與年份序號(hào)的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請(qǐng)計(jì)算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).

(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);

(3)預(yù)測(cè)到哪一年的工業(yè)增加值能突破30萬億元大關(guān).

附:樣本 的相關(guān)系數(shù)

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB1,BC2 ABC=60°,PA⊥平面ABCD,AEPCE,

下列四個(gè)結(jié)論:①ABAC;②AB⊥平面PAC;③PC⊥平面ABE;④BEPC.正確的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,底面是正三角形,

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè),當(dāng)時(shí),對(duì)任意,存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案