【題目】設(shè)有以下四個(gè)命題:

①底面是平行四邊形的四棱柱是平行六面體;

②底面是矩形的平行六面體是長方體;

③直四棱柱是直平行六面體;

④棱臺(tái)的相對(duì)側(cè)棱延長后必交于一點(diǎn).

其中正確命題的序號(hào)是______.

【答案】①④

【解析】

根據(jù)空間幾何體的結(jié)構(gòu)特征,依次判斷各選項(xiàng)即可.

命題①,符合平行六面體的定義,故命題①正確;

命題②,底面是矩形的平行六面體的側(cè)棱可能與底面不垂直,故命題②錯(cuò)誤;

命題③,因直四棱柱的底面不一定是平行四邊形,故命題③錯(cuò)誤;

命題④,由棱臺(tái)的定義知,棱臺(tái)的相對(duì)側(cè)棱延長后必交于一點(diǎn),故命題④正確.

綜上可知,正確的為①④

故答案為: ①④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為5的正方形與矩形所在平面互相垂直,分別為的中點(diǎn),

(1)求證:平面;

(2)求證:平面;

(3)在線段上是否存在一點(diǎn),使得?若存在,求出的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某工廠開展群眾體育活動(dòng)的情況,擬采用分層抽樣的方法從A,B,C三個(gè)區(qū)中抽取7個(gè)工廠進(jìn)行調(diào)查,已知A,BC區(qū)中分別有18,27,18個(gè)工廠

(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個(gè)數(shù);

(Ⅱ)若從抽取的7個(gè)工廠中隨機(jī)抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這2個(gè)工廠中至少有1個(gè)來自A區(qū)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

知圓極坐標(biāo)方程為直線參數(shù)方程為參數(shù)直線不同的兩點(diǎn),

(1)出圓坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;

(2)弦長求直線斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

組號(hào)

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

1寫出曲線的參數(shù)方程,直線的普通方程;

2求曲線上任意一點(diǎn)到直線的距離的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù):①,,,判斷如下三個(gè)命題的真假:

命題甲: 是偶函數(shù);

命題乙: 上是減函數(shù),在上是增函數(shù);

命題丙: 是增函數(shù).

則能使命題甲、乙、丙均為真的所有函數(shù)的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,定義數(shù)列 , ,數(shù)列的前項(xiàng)和為, ,且

(1) 求數(shù)列、的通項(xiàng)公式;

(2)令,求的前項(xiàng)和

(3)數(shù)列中是否存在三項(xiàng)使成等差數(shù)列,若存在,求出的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)且.

(1)設(shè)函數(shù).當(dāng)時(shí),在其定義域內(nèi)為單調(diào)增函數(shù),求的取值范圍;

(2)設(shè)函數(shù).當(dāng)時(shí),在區(qū)間(其中為自然對(duì)數(shù)的底數(shù))上是否存在實(shí)數(shù),使得成立,若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案