10.設${({2-x})^6}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,則|a1|+|a2|+…+|a6|的值是(  )
A.729B.665C.728D.636

分析 由二項式定理知a0,a2,a4,a6均為正數(shù),a1,a3,a5均為負數(shù),
|a0|+|a1|+|a2|+…+|a6|=a0-a1+a2-a3+a4-a5+a6,
利用賦值法把x=-1,x=0分別代入已知式子計算即可.

解答 解:∵(2-x)6=a0+a1x+a2x+…+a6x,
由二項式定理可知a0,a2,a4,a6均為正數(shù),a1,a3,a5均為負數(shù),
令x=-1可得:
∴|a0|+|a1|+|a2|+…+|a6|=a0-a1+a2-a3+a4-a5+a6=(2+1)6=729,
x=0時,a0=26=64;
∴|a1|+|a2|+…+|a6|=729-64=665.
故選:B.

點評 本題考查了二項式定理和賦值法的應用問題,屬基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.求值:(1)${(3\sqrt{3})^{\frac{2}{3}}}-ln{e^2}$+log318-log36+$tan\frac{7π}{6}•cos\frac{5π}{6}$
(2)A是△ABC的一個內角,$sinA•cosA=-\frac{1}{8}$,求cosA-sinA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設f(x)+g(x)=${∫}_{x}^{x+1}$2tdt,x∈R,若函數(shù)f(x)為奇函數(shù),則g(x)的解析式可以為(  )
A.x3B.cosxC.1+xD.xex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在曲線y=x2+1的圖象上取一點(1,2)及附近一點(1+△x,2+△y),則$\underset{lim}{△x→0}$$\frac{△y}{△x}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖所示,在三棱錐P-ABC的六條棱所在的直線中,異面直線共有(  )
A.2對B.3對C.4對D.6對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,棱長為3的正方體的頂點A在平面α上,三條棱AB、AC、AD都在平面α的同側.若頂點B,C到平面α的距離分別為1,$\sqrt{2}$.建立如圖所示的空間直角坐標系,設平面α的一個法向量為(x1,y1,z1),頂點D到平面α的距離為h.若x1=1,則y1+z1+h=$\sqrt{2}$+2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,已知球的半徑為3,球內接圓錐的高為h(h>3),體積為V,
(1)寫出以h表示V的函數(shù)關系式V(h);
(2)當h為何值時,V(h)有最大值,并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.計算:0.125${\;}^{-\frac{1}{3}}$×$1{6}^{\frac{3}{4}}$-3${\;}^{lo{{g}_{\sqrt{3}}}^{4}}$+log364$•lo{g}_{\frac{1}{2}}$9+log89•log964.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.圓柱的側面展開圖是長12cm,寬8cm的矩形,則這個圓柱的體積為$\frac{288}{π}$或$\frac{192}{π}$ cm3

查看答案和解析>>

同步練習冊答案