【題目】已知函數(shù),且時(shí),總有成立.

a的值;

判斷并證明函數(shù)的單調(diào)性;

上的值域.

【答案】12函數(shù)R上的減函數(shù)(3)

【解析】試題分析: 根據(jù)條件建立方程關(guān)系即可求a的值;

根據(jù)函數(shù)單調(diào)性的定義判斷并證明函數(shù)的單調(diào)性;

結(jié)合函數(shù)奇偶性和單調(diào)性的定義即可求上的值域.

試題解析:

, ,,

,

函數(shù)R上的減函數(shù),

的定義域?yàn)?/span>R,

任取,且,

.

函數(shù)R上的減函數(shù).

知,函數(shù)上的為減函數(shù),

,

,

即函數(shù)的值域?yàn)?/span>.

點(diǎn)晴:證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差: ,并將此式變形(要注意變形到能判斷整個(gè)式子符號(hào)為止);(3)定號(hào):判斷的正負(fù)(要注意說(shuō)理的充分性),必要時(shí)要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知是奇函數(shù),求常數(shù)m的值;

(2)畫(huà)出函數(shù)的圖象,并利用圖象回答:k為何值時(shí),方程 無(wú)解?有一解?有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)束.

(1)求最后取出的是正品的概率;

(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(0,e]時(shí),求g(x)=e2x﹣lnx的最小值;
(3)當(dāng)x∈(0,e]時(shí),證明:e2x﹣lnx﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某超市,隨機(jī)調(diào)查了100名顧客購(gòu)物時(shí)使用手機(jī)支付支付的情況,得到如下的列聯(lián)表,已知從其中使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.

(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認(rèn)為“超市購(gòu)物用手機(jī)支付與年齡有關(guān)”.

(2)現(xiàn)按照“使用手機(jī)支付”和“不使用手機(jī)支付”進(jìn)行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機(jī)支付”的概率.

青年

中老年

合計(jì)

使用手機(jī)支付

60

不使用手機(jī)支付

28

合計(jì)

100

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線C 的焦點(diǎn)為F,過(guò)F且斜率為的直線l交于A,B兩點(diǎn),

(1)求的方程;

(2)求過(guò)點(diǎn)A,B且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢(xún)問(wèn)100性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下2×2列聯(lián)表:

總計(jì)

愛(ài)好

40

不愛(ài)好

25

總計(jì)

45

100


(1)將題中的2×2列聯(lián)表補(bǔ)充完整;
(2)能否有99%的把握認(rèn)為斷愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?請(qǐng)說(shuō)明理由;
附:K2= ,

p(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828


(3)利用分層抽樣的方法從以上愛(ài)好該項(xiàng)運(yùn)動(dòng)的大學(xué)生中抽取6人組建了“運(yùn)動(dòng)達(dá)人社”,現(xiàn)從“運(yùn)動(dòng)達(dá)人設(shè)”中選派3人參加某項(xiàng)校際挑戰(zhàn)賽,記選出3人中的女大學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+1|﹣|2x﹣4|;
(1)解不等式f(x)≥1;
(2)若對(duì)x∈R,都有f(x)+3|x﹣2|>m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù) 的圖象如圖

給出下列四個(gè)命題:

①方程有且僅有個(gè)根;②方程有且僅有個(gè)根;

③方程有且僅有個(gè)根;④方程有且僅有個(gè)根;

其中正確命題的序號(hào)是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案