分析:(I)當(dāng)n=1時,
a1=a1-1,a
1=2.當(dāng)n≥2時,∵
Sn=an-1,
Sn-1=an-1(n≥2),由此得a
n=3a
n-1,從而能夠得到數(shù)列{a
n}的通項(xiàng)公式.
(II)由b
n+1=b
n+a
n,得b
n=b
n-1+2•3
n-2,b
3=b
2+2×3,b
2=b
1+2×3
0,相加得b
n=b
1+2×(3
n-2+…+3+3
0)=5+
=3n-1+4,由此能求出數(shù)列{b
n}的通項(xiàng)公式.
解答:解:(I)當(dāng)n=1時,
a1=a1-1,∴a
1=2.(2分)
當(dāng)n≥2時,∵
Sn=an-1①
Sn-1=an-1(n≥2)②
①-②得:
an=(an-1) -(an-1-1),即a
n=3a
n-1,(3分)
∴數(shù)列{a
n}是首項(xiàng)為2,公比為3的等比數(shù)列.(4分)
∴a
n=2×3
n-1.(6分)
(II)∵b
n+1=b
n+a
n,
∴當(dāng)n≥2時,b
n=b
n-1+2•3
n-2,
b
3=b
2+2×3,
b
2=b
1+2×3
0,(8分)
相加得b
n=b
1+2×(3
n-2+…+3+3
0)
=5+
=3n-1+4.(11分)
(相加(1分),求和(1分),結(jié)果1分)
當(dāng)n=1時,3
1-1+4=5=b
1,(12分)
∴b
n=3
n-1+4.(13分)
點(diǎn)評:第(Ⅰ)題考查迭代法求數(shù)列通項(xiàng)公式的方法,第(II)考查累加法求通項(xiàng)公式的方法,解題時要認(rèn)真審題,仔細(xì)解答.