6.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為( 。
A.B.C.11πD.13π

分析 由題意可知,該幾何體是由圓柱與圓錐組合而成,其表面積等于圓柱+圓錐在減去重疊或者多余的部分.

解答 解:由題意可知,該幾何體是由圓柱與圓錐組合而成:其表面積等于圓錐側(cè)面積+圓柱側(cè)面+圓柱底面積.
圓錐S側(cè)=πrl=2π,圓柱側(cè)面+圓柱底面積=4×2πr+πr2=8π+π=9π,
∴該幾何體的表面積為11π.
故選:C.

點評 本題考查了組合體的表面積的求法.組合體的表面積在計算時注意要減去重疊的部分.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.基本不等式可敘述為:如果a≥0,b≥0,那么$\frac{a+b}{2}$≥$\sqrt{ab}$,當(dāng)且僅當(dāng)a=b時,等號成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{4}$,則雙曲線E的離心率為( 。
A.$\frac{\sqrt{15}}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|2-x|<1的解集為(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$內(nèi)一點M(l,l)的直線l交橢圓于兩點,且M為線段AB的中點,則直線l的方程為3x+4y-7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=$\frac{lg(5-x)}{x-2}$的定義域為{x|x<5且x≠2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x}{x+b}$(b≠0且b是常數(shù)).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的條件下,求證:f(x)在(-∞,-1)上是增函數(shù);
(3)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求負(fù)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=3sinx+4cosx的最大值為( 。
A.25B.7C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)={a^x}+log_a^{(x+1)}$
(1)當(dāng)a=2時,求f(x)在x∈[0,1]的最大值;
(2)當(dāng)0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和為a,求a的值.

查看答案和解析>>

同步練習(xí)冊答案