【題目】動點在拋物線上,過點作垂直于軸,垂足為,設(shè).
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設(shè)點,過點的直線交軌跡于兩點,直線的斜率分別為,求的最小值.
【答案】(Ⅰ); (Ⅱ)1
【解析】
試題分析:(Ⅰ)考慮點和點的關(guān)系,設(shè)點,由可把用表示出來,再把代入已知拋物線方程即得; (Ⅱ)分析題意知直線斜率存在,設(shè)方程為,設(shè)點, 由直線方程與曲線方程聯(lián)立方程組,消去得的一元二次方程,則可得,當(dāng)過點時,不妨設(shè),則可以看作是曲線在A點處切線的斜率,則可計算出,當(dāng)不過點時,計算,最后計算,交把代入得到關(guān)于的函數(shù),可求得最小值.
試題解析:(Ⅰ)設(shè)點,則由得,因為點在拋物線上,
(Ⅱ)方法一:由已知,直線的斜率一定存在,設(shè)點,設(shè)方程為,
聯(lián)立得
由韋達(dá)定理得
(1)當(dāng)直線經(jīng)過點即或時,當(dāng)時,直線的斜率看作拋物線在點處的切線斜率,則,此時;當(dāng)時,同理可得.
(2)當(dāng)直線不經(jīng)過點即且時,,
所以的最小值為.
方法二:同上
故,所以的最小值為
方法三:設(shè)點,由直線過點交軌跡于兩點得:
化簡整理得:
,令,則
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,點均在函數(shù)的圖象上.
(1)求證:數(shù)列為等差數(shù)列;
(2)設(shè)是數(shù)列的前項和,求使對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且p與q是共線向量.
(1)求A的大;
(2)求函數(shù)y=2sin2B+cos()取最大值時,角B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點的橢圓經(jīng)過點,且點為其右焦點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在平行于的直線,使得直線與橢圓有公共點,且直線與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年的蔬菜銷售收入均為50萬元,設(shè)表示前年的純利潤總和(=前年的總收入前年的總支出投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方案:
① 當(dāng)年平均利潤達(dá)到最大時,以48萬元出售該廠;
② 當(dāng)純利潤總和達(dá)到最大時,以16萬元出售該廠,
問哪種方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,,,,面,設(shè)為中點,點在線段上,且.
(1)求證:平面;
(2)設(shè)異面直線與的夾角為,若,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的對稱軸為,.
(1)求函數(shù)的最小值及取得最小值時的值;
(2)試確定的取值范圍,使至少有一個實根;
(3)若,存在實數(shù),對任意,使恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達(dá)幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論的單調(diào)性;
(2)若對任意的,恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com