已知n是正整數(shù),數(shù)列{an }的前n項和為Sn,a1=1,數(shù)列{
1an
}的前n項和為Tn,數(shù)列{ Tn }的前n項和為Pn,Sn是nan與an的等差中項•
(1)求Sn;
(2)證明:(n+1)Tn+1-nTn-1=Tn;
(3)是否存在數(shù)列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有數(shù)列{bn},若不存在,請說明理由.
分析:(1)由題設知2Sn=nan+an,2Sn+1=(n+1)an+1+an+1,所以
an+1
an
=
n+1
n
,an=
an
an-1
×
an-1
an-2
×…×
a2
a
× a1=n
,由此能求出Sn=
n(n+1)
2

(2)由(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1=
n
n+1
+Tn+1-1
=
n
n+1
+Tn+
1
n+1
-1=Tn
,知Tn=(n+1)Tn+1-nTn-1.
(3)由Tn=(n+1)Tn+1-nTn-1,知Pn=(n+1)Tn-n,故存在數(shù)列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
解答:解:(1)∵Sn是nan與an的等差中項,
∴2Sn=nan+an,
∴2Sn+1=(n+1)an+1+an+1,
∴2Sn+1-2Sn=2an+1=(n+1)an+1+an+1-nan-an
化簡,得
an+1
an
=
n+1
n

an=
an
an-1
×
an-1
an-2
×…×
a2
a
× a1=n
,
∴{an}是等差數(shù)列,
Sn=
n(n+1)
2

(2)證明:∵(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1
=
n
n+1
+Tn+1-1

=
n
n+1
+Tn+
1
n+1
-1=Tn
,
∴Tn=(n+1)Tn+1-nTn-1.
(3)解:∵Tn=(n+1)Tn+1-nTn-1,
∴T1+T2+…+Tn=[2T2-T1-1]+[3T3-2T2-1]+…+[(n+1)Tn+1-nTn-1]
=(n+1)Tn+1-T1-n
=(n+1)Tn-n,
∴Pn=(n+1)Tn-n
∴存在數(shù)列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
點評:本題考查數(shù)列的性質(zhì)和應用,解題時要認真審題,注意數(shù)列的前n項和的求法和數(shù)列的證明,解題過程中合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{art }的前n項和為Sna1=1,數(shù)列{
1
an
}的前n項和為Tn數(shù)列{ Tn }的前n項和為Pn,Sn,是nan,an的等差中項•
(I )求
lim
n→∞
Sn
n2

(II)比較(n+1)Tn+1-nTn與1+Tn大;
(III)是否存在數(shù)列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有數(shù)列{bn},若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{an}的前n項和為Sn,對任何正整數(shù)n,等式Sn=-an+
12
(n-3)都成立.
(I)求數(shù)列{an}的首項a1;
(II)求數(shù)列{an}的通項公式;
(III)設數(shù)列{nan}的前n項和為Tn,不等式2Tn≤(2n+4)Sn+3是否對一切正整數(shù)n恒成立?若不恒成立,請求出不成立時n的所有值;若恒成立,請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{an}的前n項和為Sn,a1=1,Sn是nan與an的等差中項,則an等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{an}的前n項和為Sn,且滿足Sn=-an+
12
(n-3),數(shù)列(nan)的前n項和為Tn
(1)求數(shù)列{an}的通項公式;
(2)求Tn;
(3)設An=2Tn,Bn=(2n+4)Sn+3,試比較An與Bn的大。

查看答案和解析>>

同步練習冊答案