已知為橢圓的左,右焦點,為橢圓上的動點,且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點。試判斷的大小是否為定值,并說明理由.
(I) (II)定值.
解析試題分析:(I)M是橢圓上的點, 可以轉(zhuǎn)化為關(guān)于的二次函數(shù),利用二次函數(shù)求最值,可求得橢圓方程中的參數(shù)和;(II)利用直線與圓錐曲線相交的一般方法,將直線方程與橢圓方程聯(lián)立方程組,利用韋達定理,求,繼而判定是否為定值.
試題解析:(I),設(shè),則,因為點在橢圓上,則,,又因為,所以當(dāng)時,取得最小值,當(dāng)時,取得最大值,從而求得,故橢圓的方程為;
(II)設(shè)直線的方程為,
聯(lián)立方程組可得,化簡得:,
設(shè),則,又, ,由得,
所以,所以,所以為定值.
考點: 1、待定系數(shù)法求橢圓方程; 2、二次函數(shù)求最值 ; 3、直線與圓錐曲線相交的綜合應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線焦點為,直線經(jīng)過點且與拋物線相交于,兩點
(Ⅰ)若線段的中點在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左、右焦點分別為、,P為橢圓 上任意一點,且的最小值為.
(1)求橢圓的方程;
(2)動圓與橢圓相交于A、B、C、D四點,當(dāng)為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一條曲線在軸右邊,上每一點到點的距離減去它到軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點M的直線與曲線C有兩個交點,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓的左焦點為,且橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)橢圓的上下頂點分別為,是橢圓上異于的任一點,直線分別交軸于點,證明:為定值,并求出該定值;
(3)在橢圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的參數(shù)方程為是參數(shù),是曲線與軸正半軸的交點.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點與曲線只有一個公共點的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知分別是橢圓的左、右頂點,點在橢圓上,且直線與直線的斜率之積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點的兩點,直線與交于點,直線與交于點.① 求證:;② 若弦過橢圓的右焦點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與曲線的交點為、,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com