已知函數(shù) (R).
(1) 當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個(gè)交點(diǎn),求的取值范圍.
(1)當(dāng)時(shí), 取得極大值為;
當(dāng)時(shí), 取得極小值為.
(2)a的取值范圍是
(1)當(dāng)時(shí),,
∴.
令=0, 得 .
當(dāng)時(shí),, 則在上單調(diào)遞增;
當(dāng)時(shí),, 則在上單調(diào)遞減;
當(dāng)時(shí),, 在上單調(diào)遞增.
∴ 當(dāng)時(shí), 取得極大值為;
當(dāng)時(shí), 取得極小值為.
(2) ∵ = ,
∴△= = .
① 若a≥1,則△≤0,
∴≥0在R上恒成立,
∴ f(x)在R上單調(diào)遞增 .
∵f(0),,
∴當(dāng)a≥1時(shí),函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn).
② 若a<1,則△>0,
∴= 0有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè)為x1,x2,(x1<x2).
∴x1+x2 = 2,x1x2 = a.
當(dāng)變化時(shí),的取值情況如下表:
x | x1 | (x1,x2) | x2 | ||
+ | 0 | - | 0 | + | |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
∵,∴.
∴
.
同理.
∴
.
令f(x1)·f(x2)>0, 解得a>.
而當(dāng)時(shí),,
故當(dāng)時(shí), 函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn).
綜上所述,a的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年數(shù)學(xué)之友高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省無錫市江陰市成化高級中學(xué)高考數(shù)學(xué)模擬試卷(19)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)(解析版) 題型:解答題
(本小題滿分14分)
已知函數(shù)R,
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程為自然對數(shù)的底數(shù))只有一個(gè)實(shí)數(shù)根, 求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三11月月考文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知函數(shù)R, .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程為自然對數(shù)的底數(shù))只有一個(gè)實(shí)數(shù)根, 求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年遼寧省錦州市高一第一學(xué)期末數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù) (∈R).
(Ⅰ)試給出的一個(gè)值,并畫出此時(shí)函數(shù)的圖象;
(Ⅱ)若函數(shù) f (x) 在上具有單調(diào)性,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com