【題目】在直角坐標系xOy中,圓C的參數(shù)方程為:為參數(shù),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,射線l的極坐標方程為,

將圓C的參數(shù)方程化為極坐標方程;

設點A的直角坐標為,射線l與圓C交于點不同于點,求面積的最大值.

【答案】(1);(2)

【解析】

C的參數(shù)方程消去參數(shù),能求出圓C的普通方程,由此能求出圓C的極坐標方程;求出,,,分情況討論,當時,能求出面積的最大值.

C的參數(shù)方程為:為參數(shù)

C的普通方程為,即

C的極坐標方程為,即

射線l的極坐標方程為射線l與圓C交于點不同于點,

,

A的直角坐標為,,

分兩種情況:當

,

,即時,

面積取最大值

,)

=)

=

,即時三角形的面積最大值為: <.此時也不符合:.

綜上面積的大值為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】北京地鐵八通線西起四惠站,東至土橋站,全長,共設13座車站目前八通線執(zhí)行20141228日制訂的計價標準,各站間計程票價單位:元如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠東

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

span>3

3

4

4

4

4

5

5

5

傳媒大學

3

3

3

4

4

4

4

5

5

雙橋

3

3

3

4

4

4

4

4

管莊

3

3

3

3

4

4

4

八里橋

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果園

3

3

3

3

九棵樹

3

3

3

梨園

3

3

臨河里

3

土橋

四惠

四惠東

高碑店

傳媒大學

雙橋

管莊

八里橋

通州北苑

果園

九棵樹

梨園

臨河里

土橋

113座車站中任選兩個不同的車站,求兩站間票價為5元的概率;

2在土橋出站口隨機調查了n名下車的乘客,將在八通線各站上車情況統(tǒng)計如下表:

上車站點

通州北苑果園九棵樹

梨園臨河里

雙橋管莊八里橋

四惠四惠東高碑店

傳媒大學

頻率

a

b

人數(shù)

c

15

25

a,bc,n的值,并計算這n名乘客乘車平均消費金額;

3某人從四惠站上車乘坐八通線到土橋站,中途任選一站出站一次,之后再從該站乘車若想兩次乘車花費總金額最少,可以選擇中途哪站下車?寫出一個即可

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,∠C=,,M,N分別是BC,AB的中點,將△BMN沿直線MN折起,使二面角B'-MN-B的大小為,則B'N與平面ABC所成角的正切值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy22px(p0)的焦點F,直線y4y軸的交點為P,與拋物線C的交點為Q,且|QF|2|PQ|

(1)p的值;

(2)已知點T(t,-2)C上一點,M,NC上異于點T的兩點,且滿足直線TM和直線TN的斜率之和為,證明直線MN恒過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:

①若,,則

②函數(shù),的最小值是3

③用長為的鐵絲圍成--個平行四邊形,則該平行四邊形能夠被直徑為的圓形紙片完全覆蓋

④已知正實數(shù),滿足,則的最小值為.

其中所有正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸為正半軸為極軸建立極坐標系.已知曲線的極坐標方程為 ,直線與曲線相交于兩點,直線過定點且傾斜角為交曲線兩點.

(1)把曲線化成直角坐標方程,并求的值;

(2)若成等比數(shù)列,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A{x|x24ax+3a20,a0}B{x|x2x6≥0},若xAxB的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】九章算術給出求羨除體積的“術”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側棱的長,“深”指一條側棱到另兩條側棱所在平面的距離,“袤”指這兩條側棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二項式 的展開式.

(1)求展開式中含項的系數(shù);

(2)如果第項和第項的二項式系數(shù)相等,求的值.

查看答案和解析>>

同步練習冊答案