已知函數(shù)如果 ,則實數(shù)的取值范圍是(  )

      B        C       D 

 

【答案】

A

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②若f(x)是奇函數(shù),則f(0)=0;
③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},則P∩Q={x|x=15m-8,m∈N+}
④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認為正確的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2}.
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0.
③“若M={-1,0,1},則x2-2x+m>0的解集是實數(shù)集R”的逆否命題.
④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認為正確的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0;
③“若m>2,則x2-2x+m>0的解集是實數(shù)集R”的逆否命題;
④定義在R的函數(shù)f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個周期.其中為真命題的是
 
(填上你認為正確的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數(shù)的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,

(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;

(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?

查看答案和解析>>

科目:高中數(shù)學 來源:2011年新疆烏魯木齊高級中學高考數(shù)學一模試卷(理科)(解析版) 題型:填空題

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②若,則(x-1)(x-2)≤0;
③“若m>2,則x2-2x+m>0的解集是實數(shù)集R”的逆否命題;
④定義在R的函數(shù)f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個周期.其中為真命題的是    (填上你認為正確的序號).

查看答案和解析>>

同步練習冊答案